Home Cart 0 Sign in  
X

[ CAS No. 115-70-8 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 115-70-8
Chemical Structure| 115-70-8
Chemical Structure| 115-70-8
Structure of 115-70-8 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 115-70-8 ]

Related Doc. of [ 115-70-8 ]

Alternatived Products of [ 115-70-8 ]
Product Citations

Product Details of [ 115-70-8 ]

CAS No. :115-70-8 MDL No. :MFCD00004680
Formula : C5H13NO2 Boiling Point : -
Linear Structure Formula :- InChI Key :IOAOAKDONABGPZ-UHFFFAOYSA-N
M.W : 119.16 Pubchem ID :8282
Synonyms :

Calculated chemistry of [ 115-70-8 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 8
Num. arom. heavy atoms : 0
Fraction Csp3 : 1.0
Num. rotatable bonds : 3
Num. H-bond acceptors : 3.0
Num. H-bond donors : 3.0
Molar Refractivity : 31.22
TPSA : 66.48 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : No
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -7.95 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.26
Log Po/w (XLOGP3) : -1.3
Log Po/w (WLOGP) : -0.92
Log Po/w (MLOGP) : -0.65
Log Po/w (SILICOS-IT) : -0.68
Consensus Log Po/w : -0.46

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : 0.44
Solubility : 327.0 mg/ml ; 2.74 mol/l
Class : Highly soluble
Log S (Ali) : 0.4
Solubility : 301.0 mg/ml ; 2.52 mol/l
Class : Highly soluble
Log S (SILICOS-IT) : 0.03
Solubility : 127.0 mg/ml ; 1.07 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.0

Safety of [ 115-70-8 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P305+P351+P338 UN#:N/A
Hazard Statements:H319 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 115-70-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 115-70-8 ]
  • Downstream synthetic route of [ 115-70-8 ]

[ 115-70-8 ] Synthesis Path-Upstream   1~4

  • 1
  • [ 597-09-1 ]
  • [ 115-70-8 ]
Reference: [1] Patent: US2174242, 1937, ,
[2] Journal of Organic Chemistry, 1943, vol. 8, p. 11
[3] Industrial and Engineering Chemistry, 1948, vol. 40, p. 507
[4] Industrial and Engineering Chemistry, 1948, vol. 40, p. 507
[5] Patent: US2011/224460, 2011, A1, . Location in patent: Page/Page column 3-4; 5
  • 2
  • [ 32819-24-2 ]
  • [ 115-70-8 ]
Reference: [1] Organic Letters, 2014, vol. 16, # 15, p. 3860 - 3863
  • 3
  • [ 39116-23-9 ]
  • [ 115-70-8 ]
Reference: [1] Organic Letters, 2014, vol. 16, # 15, p. 3860 - 3863
  • 4
  • [ 1033408-72-8 ]
  • [ 115-70-8 ]
Reference: [1] Chemistry - A European Journal, 2008, vol. 14, # 11, p. 3290 - 3296
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Addition of an Amine to a Conjugated Enone • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols are Weakly Basic • Alcohols as Acids • Alcohols Convert Acyl Chlorides into Esters • Alcohols from Haloalkanes by Acetate Substitution-Hydrolysis • Alcohols React with PX3 • Alcoholysis of Anhydrides • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldol Addition • Alkene Hydration • Alkene Hydration • Amides Can Be Converted into Aldehydes • Amine Synthesis from Nitriles • Amine Synthesis from Nitriles • Amines Convert Acyl Chlorides into Amides • Amines Convert Esters into Amides • Appel Reaction • Azide Reduction by LiAlH4 • Azide Reduction by LiAlH4 • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Basicity of Amines • Buchwald-Hartwig C-N Bond and C-O Bond Formation Reactions • Carboxylic Acids React with Alcohols to Form Esters • Chan-Lam Coupling Reaction • Chichibabin Reaction • Chloroalkane Synthesis with SOCI2 • Chromium Reagents for Alcohol Oxidation • Chugaev Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Convert Esters into Aldehydes Using a Milder Reducing Agent • Convert Haloalkanes into Alcohols by SN2 • Corey-Kim Oxidation • Decarboxylation of 3-Ketoacids Yields Ketones • Decomposition of Lithium Aluminum Hydride by Protic Solvents • Dess-Martin Oxidation • Diazotization Reaction • DIBAL Attack Nitriles to Give Ketones • Enamine Formation • Esters Are Reduced by LiAlH4 to Give Alcohols • Esters Hydrolyze to Carboxylic Acids and Alcohols • Ether Synthesis by Oxymercuration-Demercuration • Ethers Synthesis from Alcohols with Strong Acids • Formation of an Amide from an Amine and a Carboxylic Acid • Formation of an Amide from an Amine and a Carboxylic Acid • Friedel-Crafts Alkylations Using Alcohols • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • Grignard Reagents Transform Esters into Alcohols • Grignard Reagents Transform Esters into Alcohols • Haloalcohol Formation from an Alkene Through Electrophilic Addition • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Heat of Combustion • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hofmann Elimination • Hofmann Rearrangement • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydroboration-Oxidation • Hydroboration-Oxidation • Hydrolysis of Haloalkanes • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Jones Oxidation • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Leuckart-Wallach Reaction • Mannich Reaction • Martin's Sulfurane Dehydrating Reagent • Methylation of Ammonia • Methylation of Ammonia • Mitsunobu Reaction • Moffatt Oxidation • Nitrosation of Amines • Osmium Tetroxide Reacts with Alkenes to Give Vicinal Diols • Osmium TetroxideReacts with Alkenes to Give Vicinal Diols • Oxidation of Alcohols by DMSO • Oxymercuration-Demercuration • Peptide Bond Formation with DCC • Petasis Reaction • Preparation of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkoxides with Alkyllithium • Preparation of Amines • Preparation of LDA • Primary Ether Cleavage with Strong Nucleophilic Acids • Reactions of Alcohols • Reactions of Amines • Reactions with Organometallic Reagents • Reduction of an Amide to an Amine • Reduction of an Amide to an Amine • Reduction of an Ester to an Alcohol • Reduction of Carboxylic Acids by LiAlH4 • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reductive Amination • Reductive Amination • Ring Opening of an Oxacyclopropane by Lithium Aluminum Hydride • Ring Opening of Azacyclopropanes • Ring Opening of Azacyclopropanes • Ring Opening of Oxacyclobutanes • Ritter Reaction • Sharpless Olefin Synthesis • Specialized Acylation Reagents-Vilsmeier Reagent • Strecker Synthesis • Swern Oxidation • Synthesis of 2-Amino Nitriles • Synthesis of Alcohols from Tertiary Ethers • Synthesis of an Alkyl Sulfonate • The Nucleophilic Opening of Oxacyclopropanes • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Transesterification • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Vicinal Anti Dihydroxylation of Alkenes • Williamson Ether Syntheses
Historical Records

Related Functional Groups of
[ 115-70-8 ]

Aliphatic Chain Hydrocarbons

Chemical Structure| 19792-52-0

[ 19792-52-0 ]

2-Amino-2-ethylbutan-1-ol

Similarity: 0.91

Chemical Structure| 502-32-9

[ 502-32-9 ]

2-Amino-4-methylpentan-1-ol

Similarity: 0.78

Chemical Structure| 17016-89-6

[ 17016-89-6 ]

(S)-2-Amino-3-methylbutan-1-ol hydrochloride

Similarity: 0.78

Chemical Structure| 42514-50-1

[ 42514-50-1 ]

3-Amino-3-methylbutan-1-ol

Similarity: 0.77

Chemical Structure| 115-69-5

[ 115-69-5 ]

2-Amino-2-methyl-1,3-propanediol

Similarity: 0.76

Alcohols

Chemical Structure| 19792-52-0

[ 19792-52-0 ]

2-Amino-2-ethylbutan-1-ol

Similarity: 0.91

Chemical Structure| 814254-62-1

[ 814254-62-1 ]

(1-Aminocycloheptyl)methanol

Similarity: 0.87

Chemical Structure| 107017-72-1

[ 107017-72-1 ]

(1-Aminocyclopropyl)methanol

Similarity: 0.86

Chemical Structure| 180205-34-9

[ 180205-34-9 ]

(1-Aminocyclobutyl)methanol

Similarity: 0.83

Chemical Structure| 4313-56-8

[ 4313-56-8 ]

(1-Aminocyclohexyl)methanol

Similarity: 0.83

Amines

Chemical Structure| 19792-52-0

[ 19792-52-0 ]

2-Amino-2-ethylbutan-1-ol

Similarity: 0.91

Chemical Structure| 814254-62-1

[ 814254-62-1 ]

(1-Aminocycloheptyl)methanol

Similarity: 0.87

Chemical Structure| 107017-72-1

[ 107017-72-1 ]

(1-Aminocyclopropyl)methanol

Similarity: 0.86

Chemical Structure| 180205-34-9

[ 180205-34-9 ]

(1-Aminocyclobutyl)methanol

Similarity: 0.83

Chemical Structure| 4313-56-8

[ 4313-56-8 ]

(1-Aminocyclohexyl)methanol

Similarity: 0.83

; ;