Home Cart 0 Sign in  
X

[ CAS No. 15936-09-1 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 15936-09-1
Chemical Structure| 15936-09-1
Chemical Structure| 15936-09-1
Structure of 15936-09-1 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 15936-09-1 ]

Related Doc. of [ 15936-09-1 ]

Alternatived Products of [ 15936-09-1 ]
Product Citations

Product Details of [ 15936-09-1 ]

CAS No. :15936-09-1 MDL No. :MFCD08234743
Formula : C8H6N2O Boiling Point : -
Linear Structure Formula :- InChI Key :ZFRUGZMCGCYBRC-UHFFFAOYSA-N
M.W : 146.15 Pubchem ID :299643
Synonyms :

Calculated chemistry of [ 15936-09-1 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 11
Num. arom. heavy atoms : 10
Fraction Csp3 : 0.0
Num. rotatable bonds : 0
Num. H-bond acceptors : 2.0
Num. H-bond donors : 1.0
Molar Refractivity : 42.36
TPSA : 45.75 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : Yes
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.77 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.31
Log Po/w (XLOGP3) : 0.6
Log Po/w (WLOGP) : 0.92
Log Po/w (MLOGP) : 1.13
Log Po/w (SILICOS-IT) : 2.12
Consensus Log Po/w : 1.22

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -1.8
Solubility : 2.33 mg/ml ; 0.016 mol/l
Class : Very soluble
Log S (Ali) : -1.13
Solubility : 10.7 mg/ml ; 0.0734 mol/l
Class : Very soluble
Log S (SILICOS-IT) : -3.21
Solubility : 0.0895 mg/ml ; 0.000612 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.47

Safety of [ 15936-09-1 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H302-H315-H319 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 15936-09-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 15936-09-1 ]
  • Downstream synthetic route of [ 15936-09-1 ]

[ 15936-09-1 ] Synthesis Path-Upstream   1~3

  • 1
  • [ 15936-09-1 ]
  • [ 15936-10-4 ]
YieldReaction ConditionsOperation in experiment
70% at 100℃; for 1 h; Description 92; 2-Chloro-1 8-naphthvridine; Phosphorous oxychloride (86 ml, 924 mmol) was added to 1, 8-naphthyridin-2-one [Journal of Organic Chemistry 1990,55 (15), 4744-50] (9.00 g, 61.6 mmol), and the resulting mixture heated to 100°C for 1 hour. The mixture was cooled and the excess phosphorous oxychloride was removed by evaporation. The residue was taken up in dichloromethane (100 ml) and carefully basified by the addition of sat. NaHCO3. The organic layer was separated and dried over Na2SO4, filtered, and evaporated to give the title compound as a white solid (7 g, 70percent). 1H NMR (400 MHz, CDCl3) 7.50 (1 H, d, J8.4), 7.52 (l H, dd, J8. 1 and 4.3), 8.16 (1 H, d, J- 8. 4), 8. 22 (1 H, dd, J8.1 and 2.0), 9.12 (1 H, dd, J4.3 and 2.0).
Reference: [1] Journal of the American Chemical Society, 2015, vol. 137, # 8, p. 2996 - 3003
[2] Patent: WO2005/47279, 2005, A1, . Location in patent: Page/Page column 50
[3] Patent: WO2016/130968, 2016, A1, . Location in patent: Page/Page column 161
  • 2
  • [ 15936-09-1 ]
  • [ 15936-10-4 ]
Reference: [1] Patent: US2013/225552, 2013, A1, . Location in patent: Paragraph 0485
  • 3
  • [ 141-86-6 ]
  • [ 102-52-3 ]
  • [ 15936-09-1 ]
  • [ 15992-83-3 ]
Reference: [1] New Journal of Chemistry, 2017, vol. 41, # 3, p. 1073 - 1081
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Acid-Catalyzed α -Halogenation of Ketones • Acyl Group Substitution • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkylation of Aldehydes or Ketones • Alkylation of Enolate Ions • Amide Hydrolysis • Amide Hydrolysis • Amides Can Be Converted into Aldehydes • Amines Convert Acyl Chlorides into Amides • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Baylis-Hillman Reaction • Bucherer-Bergs Reaction • Chan-Lam Coupling Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Clemmensen Reduction • Complex Metal Hydride Reductions • Conjugated Enone Takes Part in 1,4-Additions • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Decarboxylation of 3-Ketoacids Yields Ketones • Decarboxylation of Substituted Propanedioic • Deoxygenation of the Carbonyl Group • Deprotonation of a Carbonyl Compound at the α -Carbon • Diorganocuprates Convert Acyl Chlorides into Ketones • Dithioacetal Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Enolate Ions Are Protonated to Form ketones • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Formation of an Amide from an Amine and a Carboxylic Acid • Formation of an Amide from an Amine and a Carboxylic Acid • Furan Hydrolyzes to Dicarbonyl Compounds • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • Grignard Reaction • Hantzsch Pyridine Synthesis • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hofmann Rearrangement • Horner-Wadsworth-Emmons Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Isomerization of β, γ -Unsaturated Carbonyl Compounds • Ketone Synthesis from Nitriles • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Lawesson's Reagent • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • Mannich Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Mercury Ions Catalyze Alkynes to Ketones • Michael Addition • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Alkyl-substituted Benzenes Gives Aromatic Ketones • Passerini Reaction • Paternò-Büchi Reaction • Petasis Reaction • Peterson Olefination • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Amines • Prins Reaction • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Reactions of Aldehydes and Ketones • Reactions of Amines • Reduction of an Amide to an Amine • Reduction of an Amide to an Amine • Reductive Amination • Reductive Amination • Reformatsky Reaction • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Carbodiimides and Related Reagents • Specialized Acylation Reagents-Ketenes • Stobbe Condensation • Strecker Synthesis • Tebbe Olefination • The Acylium Ion Attack Benzene to Form Phenyl Ketones • The Claisen Rearrangement • The Reaction of Alkynyl Anions with Carbonyl Derivatives • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Wittig Reaction • Wolff-Kishner Reduction
Historical Records

Related Functional Groups of
[ 15936-09-1 ]

Amides

Chemical Structure| 1931-44-8

[ 1931-44-8 ]

7-Amino-1,8-naphthyridin-2(8H)-one

Similarity: 0.99

Chemical Structure| 49655-99-4

[ 49655-99-4 ]

7-Amino-1-methyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.93

Chemical Structure| 61018-78-8

[ 61018-78-8 ]

6-(Pyridin-4-yl)-1,8-naphthyridin-2(1H)-one

Similarity: 0.93

Chemical Structure| 146967-63-7

[ 146967-63-7 ]

1-Ethyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.92

Chemical Structure| 40000-89-3

[ 40000-89-3 ]

3-Methyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.89

Related Parent Nucleus of
[ 15936-09-1 ]

Naphthyridines

Chemical Structure| 1931-44-8

[ 1931-44-8 ]

7-Amino-1,8-naphthyridin-2(8H)-one

Similarity: 0.99

Chemical Structure| 49655-99-4

[ 49655-99-4 ]

7-Amino-1-methyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.93

Chemical Structure| 61018-78-8

[ 61018-78-8 ]

6-(Pyridin-4-yl)-1,8-naphthyridin-2(1H)-one

Similarity: 0.93

Chemical Structure| 146967-63-7

[ 146967-63-7 ]

1-Ethyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.92

Chemical Structure| 40000-89-3

[ 40000-89-3 ]

3-Methyl-1,8-naphthyridin-2(1H)-one

Similarity: 0.89

; ;