Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 3944-36-3 Chemical Structure| 3944-36-3

Structure of 3944-36-3

Chemical Structure| 3944-36-3

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 3944-36-3 ]

CAS No. :3944-36-3
Formula : C6H14O2
M.W : 118.18
SMILES Code : CC(O)COC(C)C
MDL No. :MFCD06252288

Safety of [ 3944-36-3 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H226-H315-H318-H335
Precautionary Statements:P210-P233-P240-P241-P242-P243-P261-P264-P271-P280-P303+P361+P353-P304+P340+P312-P305+P351+P338+P310-P332+P313-P370+P378-P403+P233-P403+P235-P405-P501
Class:3
UN#:1993
Packing Group:

Application In Synthesis of [ 3944-36-3 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 3944-36-3 ]

[ 3944-36-3 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 674-26-0 ]
  • [ 3944-36-3 ]
  • [ 611-14-3 ]
  • [ 106-42-3 ]
  • [ 526-73-8 ]
  • [ 64-19-7 ]
  • [ 802294-64-0 ]
  • [ 108-38-3 ]
  • [ 67-64-1 ]
  • [ 108-88-3 ]
  • [ 78-93-3 ]
YieldReaction ConditionsOperation in experiment
With ZSM-5; In water; at 200℃; under 27002.7 Torr;Flow reactor; Molecular sieve; Catalytic Results with ZSM-5 (0104) As in the case of amorphous SiO2/Al2O3, unconverted mevalonolactone was not detected in the liquid product of any of the investigated temperatures with ZSM-5 catalysis. This indicated that full conversion of mevalonolactone was also achieved under the conditions studied with ZSM-5. The composition of the liquid products by GC-MS and the gaseous products as a function of temperature over ZSM-5 is presented in Tables 4 and 5 respectively. (0105) At 200 C., the liquid product of the reaction was an emulsion-like homogeneous solution. The main products obtained are the anhydrous form of mevalonolactone and 3-methyl-2-butanone. Limited amounts of CO2 were detected in the gas products. Compared to the amorphous silica-alumina, where only dehydrated mevalonolactone was observed at 200 C., the much more acidic ZSM-5 catalyst not only catalyzed dehydration, but also decarboxylation. (0106) At 400 C., the liquid product separated into two distinct phases: an oily phase, forming a top layer, and an aqueous emulsion-like phase. The two phases were again separated and analyzed separately. The aqueous phase consisted mainly of acetic/propanoic acid, acetone, and toluene. In contrast to 200 C. and the results with amorphous silica alumina, no 3-methyl-2-butanone was observed. This indicates the occurrence of extensive decarboxylation/cracking reactions. The oily phase was comprised of aromatic compounds, such as p-xylene, toluene, 1,2,3-trimethyl-benzene, and 1-ethyl-2-methyl-benzene. These aromatics are probably a result of oligomerization reactions of olefins which form as intermediates over ZSM-5. CO2 and small amounts of light hydrocarbons (alkanes/alkenes) were detected in the gas phase, as shown in Table 5. [table-us-00004-en] TABLE 4 Analysis of liquid products by GC-MS obtained over ZSM-5 Conditions 4 5 WHSV, h-1 1 1 Pressure, bar 36 36 Temperature, C. 200 400 GC-MS analysis, area % Lower Upper Mevalonolactone Dehydromevalonic lactone 66.15 No matches found 0.31 6.04 Ethyl alcohol 0.28 3.10 Butane 0.55 2-Propanol, 2-methyl- 3.28 Propanal, 2,2-dimethyl- 0.56 2-Butanone 0.32 Butanal, 2,2-dimethyl- 0.3 2-Butanone, 3-methyl- 15.75 Acetone 23.10 2-Butanone 5.44 Acetic acid 0.35 40.50 Propanoic acid 5.07 Isopropyl Alcohol 4.62 2-Propanol, 1-(1-methylethoxy)- 5.10 p-Xylene 3.79 22.7 o-xylene 1.11 Benzene, 1,2,3-trimethyl- 13.34 Benzene, 1-ethyl-2-methyl- 1.96 12.58 Toluene 1.96 7.03 11.39 Benzene, 1,3-dimethyl- 6.92 Benzene, 4-ethyl-1,2-dimethyl- 3.45 2-Tolyloxirane 1.42 Benzene, 1,3,5-trimethyl- 2.59 Benzene, 1-methyl-2-(1- 0.73 methylethyl Benzene, 1-methyl-3-propyl- 1.21 Naphthalene, 1-methyl- 1.16 Naphthalene, 2,7-dimethyl- 1.07 1-Phenyl-1-butene 1 Benzene, (1-methyl-1-buteny1)- 0.89 Benzene, 1-methyl-4-(1- 0.86 methylethyl Benzene, 1,3-diethyl- 0.86 Benzene, 2-butenyl- 0.69 Benzene, propyl- 0.6 Naphthalene, 1,2,3,4-tetrahydro-6- 1.54 methyl- Other* 19.32 TOTAL 100 100 100 [table-us-00005-en] TABLE 5 Analysis of gaseous products obtained over ZSM-5 Conditions 4 5 WHSV, h-1 1 1 Pressure, bar 36 36 Temperature, C. 200 400 GC analysis, vol % Hydrogen 0.06 Methane Ethane Ethylene Propane 0.46 Propylene 0.06 Isobutane 0.02 0.68 n-butane 0.14 1-butene Isobutylene 1.15 0.05 Trans-2-butene 0.02 Cis-2-butene 1,3-butadiene Isopentane 0.22 n-pentane 1-pentylene C5+/C6+ 0.55 0.34 CO2 8.58 4.65 (??) CO 0.47 N2 93.26 90.20 Total 103.55 97.35
 

Historical Records