Structure of 72648-12-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 72648-12-5 |
Formula : | C6H3Cl4N |
M.W : | 230.91 |
SMILES Code : | ClC(C1=CC=CN=C1Cl)(Cl)Cl |
MDL No. : | MFCD00160150 |
InChI Key : | TZKVGCQBQQFWOV-UHFFFAOYSA-N |
Pubchem ID : | 606698 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 48.48 |
TPSA ? Topological Polar Surface Area: Calculated from |
12.89 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.01 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.44 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.45 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.64 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.67 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.04 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.78 |
Solubility | 0.0386 mg/ml ; 0.000167 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.39 |
Solubility | 0.0937 mg/ml ; 0.000406 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.54 |
Solubility | 0.00658 mg/ml ; 0.0000285 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.27 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
2.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.55 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With chlorine;pelletized catalyst TOSOH HSZ-690 HOD (SAR 203) with a silica binder; at 350℃;Gas phase;Product distribution / selectivity; | Example 2; The pelletized catalyst, TOSOH HSZ-690 HOD (SAR 203) with a silica binder, was ground to a coarse powder and screened to obtain a uniform size of 1-2 mm in diameter. A weight of 0.26 g of catalyst was charged into the reactor tube and glass wool (Pyrex) was used to secure it in place. Operating at a chlorine feed of 5 cc/min, a beta-picoline feed rate of 0.13 mg/min (10 cc/min N2 with a chiller temperature of 10 C.), the reagents were fed to the reactor at an initial temperature of 250 C. The system was initially ramped up to 325 C. and allowed to stablize. Under these conditions the product gases were 18.5% 3-trichloromethylpyridine (beta-tri ) and 65.4% beta-2-tet. When the system was allowed to stabilized at 350 C. the amount of beta-tri in the product gases was reduced to 2.6% and the conversion to beta-2-tet increased to 68.6% (see Table 2).; Example 3; The catalyst, TOSOH HSZ-690 HOD (SAR 203) with the silica binder, was sized to a uniform particle size of 1-2 mm in diameter. A weight of 0.26 g of catalyst was charged into the reactor tube and glass wool (Pyrex) was used to secure it in place. The reactor temperature was initially set to 250 C. prior to flowing chlorine at a rate of 5 cc/min. The beta-picoline feed rate was set to 0.13 mg/min (N2 flow 10 cc/min, chiller at 10 C.), while the reactor oven was ramped up to 350 C. over a one hour time period. At 350 C. the amount of beta-2-tet observed in the product gases was 65.6% (see Table 2).; Example 4; The catalyst, TOSOH HSZ-690 HOD (SAR 203) with the silica binder, was sized to a uniform particle size of 1-2 mm in diameter. A weight of 0.51 g of catalyst was charged into the reactor tube and glass wool (Pyrex) was used to secure it in place. The reactor temperature was initially set to 250 C. prior to flowing chlorine at a rate of 5 cc/min. The beta-picoline feed rate was set to 0.13 mg/min (chiller at 10 C.), with a nitrogen flow of 10 cc/min, while the reactor oven was ramped up to 350 C. over 2 hours. When the system had stabilized at 350 C. the amount of beta-2-tet observed in the product gases was 71.7% (see Table 2).; Example 5; The catalyst, TOSOH HSZ-690 HOD (SAR 203) with the silica binder, was sized to a uniform particle size of 1-2 mm. A weight of 0.51 g of catalyst was charged into the reactor tube and glass wool (Pyrex) was used to secure it in place. The reactor temperature was initially set to 250 C. prior to flowing chlorine at a rate of 5 cc/min. The beta-picoline feed rate was set to 0.25 mg/min (N2 at 10 cc/min, chiller at 20 C.), while the reactor oven was slowly ramped up to 350 C. over 2 hours. When the system had stabilized at 350 C. the amount of beta-2-tet observed in the product gases was 66.9% (see Table 2). | |
With chlorine; at 400℃;Gas phase;Product distribution / selectivity; | Example A; This is the control run where the reactor contained glass wool (Pyrex) plugs and no catalyst. The reactor temperature was initially set to 350 C. prior to feeding chlorine at a rate of 5 cc/min. The beta-picoline feed rate was set to 0.25 mg/min (N2 at 10 cc/min, chiller at 20 C.) at the oven temperature of 350 C. When the system had stabilized the amount of beta-2-tet was only 8.7%, with the majority of the conversion going to beta-tri (65.4%). When the temperature was increased to 400 C. the amount of beta-2-tet increased to 46.1% with a reduction in beta-tri (21.5%). A fair amount of over chlorinated 2,6-dichloro-3-trichloromethylpyridine (beta-2,6-penta,12.2%) was also observed (see Table 2). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
47%Chromat.; 21%; 4.8%Chromat.; 11%Chromat. | With tetrachloromethane; at 200 - 350℃; for 0.00305556h;Molecular sieve; Inert atmosphere; | 40 G ZSM - 5 molecular sieve (silicon-aluminum ratio 200, strip (1 - 2 mm)) by adding [...] 60 cm, diameter of 2.4 cm cylindrical quartz tube, the upper end of the catalyst filling 10 g of inert ceramic ball (diameter 4 mm), the quartz tube using the resistance wire heating. The constant pressure in the funnel 8 g 3 - methyl pyridine and 70 g CCl4[...] 200 C flask, 2 h the raw materials of the completion of the dropping, of the 3 - methyl pyridine with CCl4The steam is N2The carrier gas to the quartz tube, N2The flow rate control in 250 ml/min. Cl2In order to 300 ml/min flow rate individually to the quartz tube with the raw material of the steam in the catalyst bed on the reaction, the reaction temperature is 350 C, time is 11 s. The reaction mixture through the receiving flask condensation, GC normalized 3 - methyl pyridine totally transformed, 3 - dichloro pyridine and isomer 47%, 2 - chloro -5 - trichloromethyl pyridine 27%, 2 - chloro -3 - trichloromethyl pyridine 4.8%, 2, 3 - dichloro -5 - trichloromethyl pyridine 11%. The purity of the purification after rectification>99% of 2 - chloro -5 - trichloromethyl pyridine, the yield of 21%. |
A216957 [79055-64-4]
2-Chloro-3-methylpyridin-4-amine
Similarity: 0.75
A216957 [79055-64-4]
2-Chloro-3-methylpyridin-4-amine
Similarity: 0.75
A257736 [6959-48-4]
3-(Chloromethyl)pyridine hydrochloride
Similarity: 0.73