Home Cart Sign in  
Chemical Structure| 60456-26-0 Chemical Structure| 60456-26-0

Structure of (R)-(-)-Glycidyl butyrate
CAS No.: 60456-26-0

Chemical Structure| 60456-26-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

DE Stock

US Stock

Asia Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 60456-26-0 ]

CAS No. :60456-26-0
Formula : C7H12O3
M.W : 144.17
SMILES Code : [C@H]1(OC1)COC(=O)CCC
MDL No. :MFCD00075120
InChI Key :YLNSNVGRSIOCEU-ZCFIWIBFSA-N
Pubchem ID :2724536

Safety of [ 60456-26-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302+H312+H332-H315-H319-H341-H227
Precautionary Statements:P501-P261-P270-P202-P210-P201-P271-P264-P280-P370+P378-P308+P313-P337+P313-P305+P351+P338-P362+P364-P332+P313-P301+P312+P330-P302+P352+P312-P304+P340+P312-P403+P235-P405

Computational Chemistry of [ 60456-26-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 0
Fraction Csp3 0.86
Num. rotatable bonds 5
Num. H-bond acceptors 3.0
Num. H-bond donors 0.0
Molar Refractivity 36.02
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

38.83 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.25
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.64
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.73
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.35
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.6
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.11

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-0.81
Solubility 22.5 mg/ml ; 0.156 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.03
Solubility 13.4 mg/ml ; 0.0932 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.21
Solubility 8.93 mg/ml ; 0.0619 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.73 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.49

Application In Synthesis of [ 60456-26-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 60456-26-0 ]
  • Downstream synthetic route of [ 60456-26-0 ]

[ 60456-26-0 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 1220910-89-3 ]
  • [ 60456-26-0 ]
  • [ 856866-72-3 ]
YieldReaction ConditionsOperation in experiment
86.7%
Stage #1: With potassium <i>tert</i>-butylate; lithium tert-butoxide In tetrahydrofuran; acetonitrile at 25℃; for 2 h; Inert atmosphere
Stage #2: for 3 h;
In a 1L three-necked bottle, 50 g of a compound of Formula X3, 400 ml of tetrahydrofuran and 400 ml of acetonitrile were added.Nitrogen gas, temperature 25°C, solids insolubleThen, 9.9 g of lithium tert-butoxide and 13.9 g of potassium tert-butoxide were added, and the solid matter dissolved.The reaction solution changed from colorless to yellow,After stirring for 2 hours, the reaction solution was added dropwiseR-(-)-glycidol butyric acid and compound of formula R 19.7 g,After completion of the addition, the reaction was incubated for 3 hours, and the sample was subjected to a TLC (developing solvent: chloroform/methanol = 10/1). After the spot of the compound of Formula X3 disappeared, the sample was dropped.Add dilute hydrochloric acid prepared from concentrated hydrochloric acid and water, adjust the pH to 8, fully stir for 30 minutes, the water bath temperature is 35°C to 55°C, and the vacuum degree -0.07MPa to -0.1MPa is concentrated under reduced pressure to stop flow.
85%
Stage #1: With lithium hexamethyldisilazane In tetrahydrofuran at 20℃; for 1.41667 h; Inert atmosphere
Stage #2: With 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone In tetrahydrofuran at 20℃; for 15 h; Inert atmosphere; cooling with ice
A 5-L, three-neck, round-bottom flask was equipped with an overhead stirrer, a thermocouple, a 500-mL addition funnel and a nitrogen-inlet adapter. The flask was dried with a heat gun under a flow of nitrogen to an internal temperature of 60°C. The flask was charged with intermediate 7 (110.0 g, 0.272 mol, AMRI lot No. DUG-AF-202Q)) and anhydrous THF (2.2 L, 20 vol). The slurry was stirred and a light green solution formed. The addition funnel was charged with 1.0 M lithium hexamethyldisilazide (299 mL, 0.286 mol, 1.05 eq.). The LiHMDS solution was added dropwise to the solution of intermediate 7 over approximately 25 minutes. A red solution formed. The solution was stirred one hour at room temperature and then DMPU (34.9 g, 0.272 mol, 1 eq) was added, and the mixture turned to a yellow slurry. The batch was cooled in an ice bath to 5.7°C. R-(-)-Glycidyl butyrate (41.25 g, 0.286 mol, 1.05 eq) was then added in one portion. The mixture was stirred in the ice bath for 0.5 hour and then was warmed to room temperature and stirred overnight. The reaction formed a tan slurry at this point, and HPLC analysis after 15 hours indicated that there was approximately 87percent TR-700, 1.6percent intermediate 7, and approximately 7percent of the butyrate ester of TR-700. A small amount of sodium methoxide in methanol (11 mL, 0.1 vol) was added, and the batch was stirred for 1 hour to remove the residual ester. The in-process HPLC analysis at this point showed there was approximately 90.7percent TR-700 and 0.2percent of the butyrate ester. The reaction was quenched by the addition of 10percent w/w ammonium chloride solution (1.1 L, 10 vol). A modest exothermic event from 22°C to 25°C was observed upon addition of the ammonium chloride solution. The two-phase mixture was distilled to a pot temperature of 700C (atmospheric pressure) to remove approximately 2.2 L of the THF. This formed a thick slurry which is diluted with water (550 mL, 5 volumes). The slurry was cooled to room temperature (23.6°C) and was filtered. The filter cake was washed with water (1.1 L, 10 vol) and methanol (550 mL, 5 vol) to give TR-700 as a white solid. The wet cake was dried overnight in a vacuum oven at 500C to give 89.7 g of TR-700 (89percent yield) that was 97.8percent (AUC) by HPLC analysis. The TR-700 was further purified by reslurrying in 2.7 L (30 vol) of 4: 1 methanol/water at 700C, cooling to 230C, filtering and washing with methanol (180 ml). This removed some of the over-alkylated product that is observed. The purified TR- 700 was recovered in 96percent yield (85percent overall yield), and the purity was improved to 98.4percent (AUC) by HPLC analysis. The palladium content was 10 ppm.
References: [1] Patent: CN107722056, 2018, A, . Location in patent: Paragraph 0058; 0060; 0062; 0063; 0064; 0068.
[2] Patent: WO2010/42887, 2010, A2, . Location in patent: Page/Page column 19-20.
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 60456-26-0 ]

Esters

Chemical Structure| 2277-23-8

A111808 [2277-23-8]

2,3-Dihydroxypropyl decanoate

Similarity: 0.93

Chemical Structure| 123-94-4

A196217 [123-94-4]

2,3-Dihydroxypropyl stearate

Similarity: 0.93

Chemical Structure| 31566-31-1

A390484 [31566-31-1]

Glyceryl monostearate

Similarity: 0.93

Chemical Structure| 555-43-1

A221844 [555-43-1]

Propane-1,2,3-triyl tristearate

Similarity: 0.90

Chemical Structure| 7384-98-7

A139702 [7384-98-7]

Propane-1,2-diyl dioctanoate

Similarity: 0.86

Related Parent Nucleus of
[ 60456-26-0 ]

Epoxides

Chemical Structure| 3130-19-6

A381806 [3130-19-6]

Bis(7-oxabicyclo[4.1.0]heptan-3-ylmethyl) adipate

Similarity: 0.73

Chemical Structure| 171361-65-2

A684192 [171361-65-2]

Ethyl 1-oxaspiro[2.5]octane-6-carboxylate

Similarity: 0.67

Chemical Structure| 51877-54-4

A495627 [51877-54-4]

Potassium oxirane-2-carboxylate

Similarity: 0.58

Chemical Structure| 285-69-8

A137229 [285-69-8]

3,6-Dioxabicyclo[3.1.0]hexane

Similarity: 0.57

Other Aliphatic Heterocycles

Chemical Structure| 210647-03-3

A179283 [210647-03-3]

2-(1,4-Dioxan-2-yl)acetic acid

Similarity: 0.74

Chemical Structure| 3130-19-6

A381806 [3130-19-6]

Bis(7-oxabicyclo[4.1.0]heptan-3-ylmethyl) adipate

Similarity: 0.73

Chemical Structure| 13076-17-0

A178884 [13076-17-0]

(3R,6R)-3,6-Dimethyl-1,4-dioxane-2,5-dione

Similarity: 0.67

Chemical Structure| 171361-65-2

A684192 [171361-65-2]

Ethyl 1-oxaspiro[2.5]octane-6-carboxylate

Similarity: 0.67