*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
3,5-Di-tert-butylphenol is a volatile organic compound with antibiofilm and antifungal activity, leading to the accumulation of reactive oxygen species (ROS).
Synonyms: 3,5-Di-tert-butylphenol
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1138-52-9 |
Formula : | C14H22O |
M.W : | 206.32 |
SMILES Code : | OC1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1 |
Synonyms : |
3,5-Di-tert-butylphenol
|
MDL No. : | MFCD00008829 |
InChI Key : | ZDWSNKPLZUXBPE-UHFFFAOYSA-N |
Pubchem ID : | 70825 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With molybdenum(VI) oxide; In ethanol; at 280℃; for 4h;Inert atmosphere; | General procedure: 2.0 g of guaiac acid (purchased in Tianjin Guangfu Technology Co., Ltd.), 0.5 g of MOS catalyst and 100 ml of ethanol were placed in a 300 ml reaction vessel, and the air in the reaction vessel was replaced with nitrogen. The temperature was raised to 280 C, and the reaction was stirred for 4 h. After the reaction was completed, the mixture was filtered under suction and rotary evaporated. The liquid product was subjected to qualitative analysis on a gas chromatography-mass spectrometer (GC6890-MS5973, Agilent), and the internal standard was added. Quantitative analysis by gas chromatography. The chromatogram was performed on an HP-5ms, 30m X 0.25mm X 0.25mum capillary column. The conversion of the raw guaiacol is calculated by (initial guaiacol moles - residual guaiacol moles) / (initial guaiacol moles) X100%, and the selectivity of the product hydrocarbyl phenol is (hydrocarbyl phenol) The number of moles / (molar guaiacol moles) X 100 % was calculated. Among the guaiacol conversion products, ethyl phenols include o-ethyl phenol, 2,5-diethyl phenol, 3,5-diethyl phenol, and propyl phenols include 2,6-diisopropyl phenol. , 2,4-diisopropylphenol, 2,4,6-triisopropylphenol, butyl phenols including 2,5-di-sec-butylphenol, 2,6-di-tert-butylphenol, 2, 4-di-tert-butylphenol, 2,6-di-tert-butyl-p-ethylphenol, pentanols include 2,4-di-tert-amylphenol, others include o-ethoxyphenol, o-ethoxybenzene Methyl ether, p-ethyl guaiacol, 2,6-diisopropylanisole). |