Home Cart 0 Sign in  
X

[ CAS No. 1673-47-8 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 1673-47-8
Chemical Structure| 1673-47-8
Chemical Structure| 1673-47-8
Structure of 1673-47-8 * Storage: {[proInfo.prStorage]}
Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Quality Control of [ 1673-47-8 ]

Related Doc. of [ 1673-47-8 ]

Alternatived Products of [ 1673-47-8 ]

Product Details of [ 1673-47-8 ]

CAS No. :1673-47-8 MDL No. :MFCD00014757
Formula : C7H7ClN2O Boiling Point : -
Linear Structure Formula :- InChI Key :PHRDZSRVSVNQRN-UHFFFAOYSA-N
M.W : 170.60 Pubchem ID :74289
Synonyms :

Calculated chemistry of [ 1673-47-8 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 11
Num. arom. heavy atoms : 6
Fraction Csp3 : 0.0
Num. rotatable bonds : 2
Num. H-bond acceptors : 2.0
Num. H-bond donors : 2.0
Molar Refractivity : 42.35
TPSA : 55.12 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.5 cm/s

Lipophilicity

Log Po/w (iLOGP) : 0.78
Log Po/w (XLOGP3) : 1.18
Log Po/w (WLOGP) : 0.94
Log Po/w (MLOGP) : 1.73
Log Po/w (SILICOS-IT) : 0.84
Consensus Log Po/w : 1.09

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -1.91
Solubility : 2.09 mg/ml ; 0.0122 mol/l
Class : Very soluble
Log S (Ali) : -1.93
Solubility : 1.99 mg/ml ; 0.0117 mol/l
Class : Very soluble
Log S (SILICOS-IT) : -2.65
Solubility : 0.383 mg/ml ; 0.00224 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 2.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.2

Safety of [ 1673-47-8 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H315-H319-H335 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 1673-47-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 1673-47-8 ]
  • Downstream synthetic route of [ 1673-47-8 ]

[ 1673-47-8 ] Synthesis Path-Upstream   1~7

  • 1
  • [ 1128-76-3 ]
  • [ 1673-47-8 ]
YieldReaction ConditionsOperation in experiment
88% With hydrazine hydrate In ethanol; waterReflux General procedure: Hydrazides (30–58) were synthesized by one pot conventionalmethod24 Benzoic acid or its derivative (10 mmol) was dissolvedin ethanol (20 mL). Sulfuric acid (3 N, 2 mL) was added and thereaction contents were refluxed for six hours. The reaction wasmonitored with TLC. After the completion of the reaction, the reactionmixture was neutralized by adding solid NaHCO3, and filteredto remove excess of NaHCO3. In the neutralized reaction mixture which contains ethyl ester, hydrazine monohydrate (1.5 mL,3 mmol) was added and refluxed for 3–6 h to complete the reaction.Ethanol and unreacted hydrazine were removed by distillationupto 1/3 volume. The reaction contents were cooled, filteredand recrystallized from methanol to obtain the desired hydrazidecrystals (see Supporting information).
890 mg With hydrazine hydrate In ethanolReflux To a solution of 3-chlorobenzoic acid (1 g, 6.39 mmol) in ethanol (10 mL) was added cHCl (5 drops) and the mixture heated at reflux overnight. The solvents were evaporated to give the target compound as a white solid. This compound was then dissolved in ethanol (10 mL) and hydrazine hydrate (6.21 mL, 128 mmol) was added and the mixture heated at reflux overnight. Solvents were evaporated and the product was purified by flash chromatography using a gradient mixture of ethyl acetate and hexanes to give the desire compound as a yellow solid (890 mg, 81percent over 2 steps). 1H NMR (CDCl3), ä 7.41 (t, J = 7 Hz, 1H), 7.49 (d, J = 7 Hz, 1H), 7.73 (m, 1H), 7.86 (m, J = 4 Hz, 1H); MS m/z = 171.5, 173.5 (M + H)+.
Reference: [1] Bioorganic and Medicinal Chemistry, 2015, vol. 23, # 17, p. 6014 - 6024
[2] Science Reports of National Tsing Hua University, Series A: Mathematical, Physical, and Engineering Sciences, 1936, vol. <A> 3, p. 443,446
[3] Journal fuer Praktische Chemie (Leipzig), 1901, vol. <2>64, p. 332
[4] Journal of Organic Chemistry, 2004, vol. 69, # 19, p. 6449 - 6454
[5] Bioorganic and Medicinal Chemistry Letters, 2006, vol. 16, # 8, p. 2278 - 2282
[6] Phosphorus, Sulfur and Silicon and the Related Elements, 2006, vol. 181, # 9, p. 2079 - 2087
[7] Journal of Chemical Research, 2010, vol. 34, # 12, p. 680 - 683
[8] Journal of Chemical Research, 2011, vol. 35, # 4, p. 234 - 237
[9] Journal of Chemical Research, 2011, vol. 35, # 6, p. 364 - 367
[10] Letters in Drug Design and Discovery, 2012, vol. 9, # 2, p. 135 - 139
[11] Journal of Chemical Research, 2012, vol. 36, # 7, p. 383 - 386
[12] Tetrahedron, 2014, vol. 70, # 12, p. 2190 - 2194
[13] Archives of Pharmacal Research, 2014, vol. 37, # 7, p. 852 - 861
[14] Marine Drugs, 2014, vol. 12, # 4, p. 1839 - 1858
[15] Bioorganic and Medicinal Chemistry Letters, 2015, vol. 25, # 15, p. 3052 - 3056
[16] Phosphorus, Sulfur and Silicon and the Related Elements, 2015, vol. 190, # 7, p. 1045 - 1055
[17] Asian Journal of Chemistry, 2015, vol. 27, # 10, p. 3605 - 3608
[18] Asian Journal of Chemistry, 2016, vol. 28, # 3, p. 639 - 643
[19] Journal of the Brazilian Chemical Society, 2016, vol. 27, # 11, p. 1998 - 2010
[20] Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 2016, vol. 55B, # 2, p. 207 - 212
[21] ChemMedChem, 2017, vol. 12, # 12, p. 972 - 985
[22] Chemical Biology and Drug Design, 2017, vol. 90, # 2, p. 236 - 243
[23] Bioorganic and Medicinal Chemistry, 2017, vol. 25, # 20, p. 5652 - 5661
[24] Archiv der Pharmazie, 2017, vol. 350, # 11,
[25] Journal of the Chilean Chemical Society, 2017, vol. 62, # 1, p. 3370 - 3375
[26] Russian Journal of Bioorganic Chemistry, 2017, vol. 43, # 3, p. 328 - 339[27] Bioorg. Khim., 2017, vol. 43, # 3, p. 328 - 339,12
[28] RSC Advances, 2018, vol. 8, # 12, p. 6306 - 6314
  • 2
  • [ 2905-65-9 ]
  • [ 1673-47-8 ]
Reference: [1] Biomedicine and Pharmacotherapy, 2017, vol. 94, p. 499 - 513
[2] Letters in Drug Design and Discovery, 2012, vol. 9, # 3, p. 276 - 281
[3] Journal of Medicinal Chemistry, 2016, vol. 59, # 6, p. 2362 - 2380
[4] Bioorganic and Medicinal Chemistry, 2008, vol. 16, # 14, p. 6724 - 6731
[5] Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, 2010, vol. 65, # 2, p. 178 - 184
[6] European Journal of Medicinal Chemistry, 2010, vol. 45, # 11, p. 5200 - 5207
[7] Monatshefte fur Chemie, 2010, vol. 141, # 4, p. 479 - 484
[8] Oriental Journal of Chemistry, 2011, vol. 27, # 4, p. 1465 - 1473
[9] Arzneimittel-Forschung/Drug Research, 2011, vol. 61, # 8, p. 452 - 457
[10] Medicinal Chemistry, 2012, vol. 8, # 6, p. 1190 - 1197,8
[11] Medicinal Chemistry, 2012, vol. 8, # 6, p. 1190 - 1197
[12] Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, 2015, vol. 70, # 8, p. 609 - 616
[13] Australian Journal of Chemistry, 2012, vol. 65, # 10, p. 1413 - 1419,7
[14] Australian Journal of Chemistry, 2012, vol. 65, # 10, p. 1413 - 1419
[15] Chemical Biology and Drug Design, 2013, vol. 82, # 5, p. 546 - 556
[16] Bioorganic and Medicinal Chemistry Letters, 2014, vol. 24, # 1, p. 192 - 194
[17] Medicinal Chemistry Research, 2014, vol. 23, # 4, p. 1661 - 1671
[18] Synthetic Communications, 2014, vol. 44, # 18, p. 2724 - 2737
[19] Chemical Communications, 2015, vol. 51, # 76, p. 14365 - 14368
[20] Journal of Molecular Structure, 2016, vol. 1117, p. 8 - 16
[21] Molecules, 2016, vol. 21, # 5,
[22] Letters in Drug Design and Discovery, 2016, vol. 13, # 9, p. 968 - 981
[23] Journal of the Chemical Society of Pakistan, 2016, vol. 38, # 5, p. 864 - 881
[24] Chemical Biology and Drug Design, 2017, vol. 89, # 1, p. 47 - 60
[25] Arkivoc, 2016, vol. 2017, # 2, p. 87 - 106
  • 3
  • [ 535-80-8 ]
  • [ 1673-47-8 ]
YieldReaction ConditionsOperation in experiment
53% With dmap; hydrazine hydrate In methanol; ethanol; dichloromethane 3-Chlorobenzhydrazide
A mixture of 3-chlorobenzoic acid (0.5 g, 3.19 mmol), 1,3-diccyclohexylcarbodiimide (0.72 g, 3.51 mmol), 4-dimethylaminopyridine (0.04 g, 0.32 mmol) in ethanol was stirred at ambient temperature for 1.5 hour.
The white solid was filtered off and the filtrate diluted with dichloromethane (100 mL).
The organic solution was washed with 1N sodium hydrogen sulfate (100 mL), saturated sodium bicarbonate (100 mL), water (100 mL) and brine (100 mL).
The organic phase was dried over anhydrous magnesium sulfate and filtered.
The filtrate was concentrated in vacuo.
The crude residue was dissolved in ethanol (15 mL) and treated with hydrazine monohydrate (0.46 mL, 9.58 mmol).
The resulting clear solution was stirred overnight at ambient temperature.
The reaction mixture was then concentrated to dryness in vacuo.
Silica gel chromatography of the residue, using 3percent methanol in dichloromethane, afforded 0.29 g (53percent) of 3-chlorobenzhydrazide as a white solid.
Reference: [1] European Journal of Medicinal Chemistry, 2017, vol. 138, p. 396 - 406
[2] Patent: US2003/55085, 2003, A1,
[3] Journal of Chemical Research, 2010, vol. 34, # 12, p. 680 - 683
[4] Journal of Chemical Research, 2011, vol. 35, # 4, p. 234 - 237
[5] Monatshefte fur Chemie, 2010, vol. 141, # 4, p. 479 - 484
[6] Journal of Chemical Research, 2011, vol. 35, # 6, p. 364 - 367
[7] Arzneimittel-Forschung/Drug Research, 2011, vol. 61, # 8, p. 452 - 457
[8] Letters in Drug Design and Discovery, 2012, vol. 9, # 3, p. 276 - 281
[9] Journal of Chemical Research, 2012, vol. 36, # 7, p. 383 - 386
[10] Medicinal Chemistry, 2012, vol. 8, # 6, p. 1190 - 1197,8
[11] Medicinal Chemistry, 2012, vol. 8, # 6, p. 1190 - 1197
[12] Australian Journal of Chemistry, 2012, vol. 65, # 10, p. 1413 - 1419,7
[13] Australian Journal of Chemistry, 2012, vol. 65, # 10, p. 1413 - 1419
[14] Chemical Biology and Drug Design, 2013, vol. 82, # 5, p. 546 - 556
[15] Bioorganic and Medicinal Chemistry Letters, 2014, vol. 24, # 1, p. 192 - 194
[16] Archives of Pharmacal Research, 2014, vol. 37, # 7, p. 852 - 861
[17] Synthetic Communications, 2014, vol. 44, # 18, p. 2724 - 2737
[18] Marine Drugs, 2014, vol. 12, # 4, p. 1839 - 1858
[19] Bioorganic and Medicinal Chemistry Letters, 2015, vol. 25, # 15, p. 3052 - 3056
[20] Phosphorus, Sulfur and Silicon and the Related Elements, 2015, vol. 190, # 7, p. 1045 - 1055
[21] Chemical Communications, 2015, vol. 51, # 76, p. 14365 - 14368
[22] Bioorganic and Medicinal Chemistry, 2015, vol. 23, # 17, p. 6014 - 6024
[23] Asian Journal of Chemistry, 2016, vol. 28, # 3, p. 639 - 643
[24] Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, 2015, vol. 70, # 8, p. 609 - 616
[25] Journal of Molecular Structure, 2016, vol. 1117, p. 8 - 16
[26] Molecules, 2016, vol. 21, # 5,
[27] Journal of the Brazilian Chemical Society, 2016, vol. 27, # 11, p. 1998 - 2010
[28] Journal of the Chemical Society of Pakistan, 2016, vol. 38, # 5, p. 864 - 881
[29] Chemical Biology and Drug Design, 2017, vol. 89, # 1, p. 47 - 60
[30] Chinese Journal of Chemistry, 2016, vol. 34, # 12, p. 1236 - 1244
[31] Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 2016, vol. 55B, # 2, p. 207 - 212
[32] Arkivoc, 2016, vol. 2017, # 2, p. 87 - 106
[33] ChemMedChem, 2017, vol. 12, # 12, p. 972 - 985
[34] Chemical Biology and Drug Design, 2017, vol. 90, # 2, p. 236 - 243
[35] Biomedicine and Pharmacotherapy, 2017, vol. 94, p. 499 - 513
[36] Bioorganic and Medicinal Chemistry, 2017, vol. 25, # 20, p. 5652 - 5661
[37] Archiv der Pharmazie, 2017, vol. 350, # 11,
[38] Journal of the Chilean Chemical Society, 2017, vol. 62, # 1, p. 3370 - 3375
[39] Russian Journal of Bioorganic Chemistry, 2017, vol. 43, # 3, p. 328 - 339[40] Bioorg. Khim., 2017, vol. 43, # 3, p. 328 - 339,12
[41] RSC Advances, 2018, vol. 8, # 12, p. 6306 - 6314
[42] Bioorganic and Medicinal Chemistry Letters, 2018, vol. 28, # 10, p. 1797 - 1803
  • 4
  • [ 618-46-2 ]
  • [ 1673-47-8 ]
Reference: [1] Bioorganic and Medicinal Chemistry Letters, 2010, vol. 20, # 4, p. 1368 - 1372
[2] Bioorganic and Medicinal Chemistry Letters, 2014, vol. 24, # 1, p. 192 - 194
[3] Bulletin of the Korean Chemical Society, 2014, vol. 35, # 8, p. 2271 - 2276
[4] Journal of Molecular Structure, 2016, vol. 1117, p. 8 - 16
  • 5
  • [ 1644630-64-7 ]
  • [ 302-01-2 ]
  • [ 1673-47-8 ]
Reference: [1] Bulletin of the Korean Chemical Society, 2014, vol. 35, # 8, p. 2271 - 2276
  • 6
  • [ 37156-42-6 ]
  • [ 100-02-7 ]
  • [ 1673-47-8 ]
Reference: [1] Canadian Journal of Chemistry, 1998, vol. 76, # 6, p. 729 - 737
  • 7
  • [ 351892-45-0 ]
  • [ 1673-47-8 ]
Reference: [1] Bioorganic and Medicinal Chemistry Letters, 2008, vol. 18, # 6, p. 2162 - 2166
Recommend Products
Same Skeleton Products
Historical Records

Related Functional Groups of
[ 1673-47-8 ]

Aryls

Chemical Structure| 619-56-7

[ 619-56-7 ]

4-Chlorobenzamide

Similarity: 0.90

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 609-66-5

[ 609-66-5 ]

2-Chlorobenzamide

Similarity: 0.81

Chemical Structure| 5980-26-7

[ 5980-26-7 ]

2,5-Dichlorobenzamide

Similarity: 0.81

Chemical Structure| 613-94-5

[ 613-94-5 ]

Benzohydrazide

Similarity: 0.78

Chlorides

Chemical Structure| 619-56-7

[ 619-56-7 ]

4-Chlorobenzamide

Similarity: 0.90

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 609-66-5

[ 609-66-5 ]

2-Chlorobenzamide

Similarity: 0.81

Chemical Structure| 5980-26-7

[ 5980-26-7 ]

2,5-Dichlorobenzamide

Similarity: 0.81

Chemical Structure| 14062-80-7

[ 14062-80-7 ]

4-Chloro-N,N-dimethylbenzamide

Similarity: 0.77

Amides

Chemical Structure| 619-56-7

[ 619-56-7 ]

4-Chlorobenzamide

Similarity: 0.90

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 609-66-5

[ 609-66-5 ]

2-Chlorobenzamide

Similarity: 0.81

Chemical Structure| 5980-26-7

[ 5980-26-7 ]

2,5-Dichlorobenzamide

Similarity: 0.81

Chemical Structure| 613-94-5

[ 613-94-5 ]

Benzohydrazide

Similarity: 0.78

Hydrazides

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 2760-98-7

[ 2760-98-7 ]

Isophthalic dihydrazide

Similarity: 0.78

Chemical Structure| 613-94-5

[ 613-94-5 ]

Benzohydrazide

Similarity: 0.78

Chemical Structure| 1016768-00-5

[ 1016768-00-5 ]

4-Chloro-2-fluorobenzohydrazide

Similarity: 0.75

Chemical Structure| 43038-45-5

[ 43038-45-5 ]

1-Naphthohydrazide

Similarity: 0.72

Amines

Chemical Structure| 619-56-7

[ 619-56-7 ]

4-Chlorobenzamide

Similarity: 0.90

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 609-66-5

[ 609-66-5 ]

2-Chlorobenzamide

Similarity: 0.81

Chemical Structure| 5980-26-7

[ 5980-26-7 ]

2,5-Dichlorobenzamide

Similarity: 0.81

Chemical Structure| 613-94-5

[ 613-94-5 ]

Benzohydrazide

Similarity: 0.78

Hydrazines

Chemical Structure| 438197-19-4

[ 438197-19-4 ]

2,3-Dichlorobenzohydrazide

Similarity: 0.86

Chemical Structure| 2760-98-7

[ 2760-98-7 ]

Isophthalic dihydrazide

Similarity: 0.78

Chemical Structure| 613-94-5

[ 613-94-5 ]

Benzohydrazide

Similarity: 0.78

Chemical Structure| 1185303-65-4

[ 1185303-65-4 ]

(4-Chlorobenzyl)hydrazine dihydrochloride

Similarity: 0.76

Chemical Structure| 1016768-00-5

[ 1016768-00-5 ]

4-Chloro-2-fluorobenzohydrazide

Similarity: 0.75