Structure of 2406-90-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 2406-90-8 |
Formula : | C7H5ClN2S |
M.W : | 184.65 |
SMILES Code : | NC1=CC=C2N=C(Cl)SC2=C1 |
MDL No. : | MFCD08276901 |
InChI Key : | YPTWPDOGEAHMOR-UHFFFAOYSA-N |
Pubchem ID : | 10921203 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 49.03 |
TPSA ? Topological Polar Surface Area: Calculated from |
67.15 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.82 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.58 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.54 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.45 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.07 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.29 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.22 |
Solubility | 0.112 mg/ml ; 0.000609 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.64 |
Solubility | 0.0424 mg/ml ; 0.00023 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.23 |
Solubility | 0.109 mg/ml ; 0.000593 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.59 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.36 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | To a solution of 2-CHLOROBENZOTHIAZOLE (12.0 g, 70.7 MMOL) in concentrated H2SO4 (60 mL) was added HN03 (69% solution, 6 mL) dropwise at 0C for 20 min. The mixture was stirred at 5C for 3h, poured into ice-water (150 mL). The precipitate was collected and washed with 5% sodium bicarbonate and water, dried in VACUO.'H NMR analysis showed the mixture contained 78% 6-nitro-2-chlorobenzothiazole and 8% 5-nitro-2- chlorobenzothiazole. Recrystallization from ethanol gave 6-nitro-2-chlorobenzothiazole as white crystalline solid (11 g, 72%). 3.5 g of the solid was dissolved in refluxing ethanol-acetic acid (150: 15 mL), Iron powder was added in one portion.. The mixture was refluxed for 1.5h, filtered. The filtrate was concentrated in vacuo to half volume and neutralized with 10% NaOH to pH 7.5, extracted with ethyl acetate. The organic phase was washed with brine, dried over magnesium sulphate and evaporated to give a residue, which was RECRYSTALLIZED from ethanol. Light purple crystals (2.5 g, 83%) were obtained. Mp 160-164C ; TLC single spot at Rf 0.27 (30% EtOAc/hexane) ;'HNMR (270 MHz, DMSO-d6) 5 7.58 (1H, d, J = 9.0 Hz, 4-H), 7.03 (1H, d, J = 2.0 Hz, 7-H), 6.77 (1 H, dd, J = 9.0, 2. 0 Hz, 5-H), 5.55 (2H, s, NH2). The mother liquor from the RECRYSTALLIZATION of nitration product was evaporated and subjected to iron powder reduction as described above. The crude product was purified with flash chromatography (ethyl acetate-DCM gradient elution) to give 2-CHLORO- benzothiazol-5-yl-amine as yellow solid. Mp 146-149C ; TLC single spot at Rf 0.52 (10% EtOAc/DCM) ;'HNMR (270 MHZ, DMSO-d6) 8 7.63 (1 H, d, J = 8. 6 HZ, 7-H), 7.05 (1 H, d, J = 2.3 Hz, 4-H), 6.78 (1 H, dd, J = 8.6, 2.3 Hz, 6-H), 5.40 (2H, s, NH2). | |
61% | (B) Synthesis of 2-chloro-6-aminobenzothiazole (3) Compound 2 (1.96 g, 9.14 mmol) was dissolved in ethanol (150 mL) and purified water (100 mL), and the solution was added with anhydrous tin(II) chloride (20.7 g, 91.7 mmol). The mixture was added with 4.8 mol/L hydrochloric acid (20 mL, 96 mmol) and refluxed at 120 C. After disappearance of the starting materials was confirmed by thin layer chromatography (developing solvent: dichloromethane), the mixture was basified with aqueous sodium hydroxide. The precipitates were removed by filtration, After, ethanol was evaporated, the residue was extracted three times with ethyl acetate. Then organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/n-hexane=1/1) to obtain Compound 3 as white solid (1.02 g, 61% yield). 1H-NMR (300 MHz, CDCl3) delta 3.85 (br, 2H), 6.81 (dd, 1H, J=2.4, 8.7 Hz), 6.99 (d, 1H, J=2.4 Hz), 7.70 (d, 1H, J=8.7 Hz). MS (ESI+) 185.0, [M+H]+. | |
33% | With iron; acetic acid; at 40℃; for 5h; | Suspend 2-Chloro-6-nitro-benzothiazole (21.43 g, 99.8 mmol) in glacial acetic acid (30OmL). Add elemental iron (12.9 g, 231 mmol) and stir at 40 0C for 5 h. Filter the reaction mixture through Celite, concentrate in vacuo, and adsorb onto silica gel. Subject the residue to silica gel flash column chromatography in two portions [(120 g column, 0-10% CH3OH/CH2CI2), (120 g column, 0-5% CH3OHZCH2Cl2)] to yield the desired product (6.17 g, 33%). mass spectrum (m/e): 185.0 (M+l). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
54% | In dimethyl sulfoxide; at 120℃; | (C) Synthesis of 2-cyano-6-aminobenzothiazole (4) Potassium cyanide (1.29 g, 19.7 mmol) was added to dimethyl sulfoxide (DMSO, 150 mL). After argon substitution, the mixture was refluxed overnight at 135° C. with stirring. The temperature was lowered to 120° C., and Compound 3 (1.02 g, 5.55 mmol) dissolved in DMSO (20 mL) was added. After disappearance of the starting materials was confirmed by thin layer chromatography (developing solvent: ethyl acetate/n-hexane=2/1), the reaction mixture was poured into a mixed solution of 1.0 mol/L potassium dihydrogenphosphate solution (100 mL) and diethyl ether, (150 mL), and the diethyl ether layer was separated. The aqueous layer was extracted 5 times with ethyl acetate, the organic layer was mixed with the diethyl ether layer, and this organic solvent layer was washed twice with purified water and twice with saturated brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/n-hexane=1/4 to 1/2) to obtain Compound 4 as yellow solid (521 mg, 54percent yield). 1H-NMR (300 MHz, CDCl3) delta 4.13 (br, 2H), 6.96 (dd, 1H, J=2.4, 8.9 Hz), 7.09 (d, 1H J=2.4 Hz), 7.95 (d, 1H, J=8.9 Hz). MS (ESI+) 176.0, [M+H]+. |
A131892 [399-74-6]
2-Chloro-6-fluorobenzo[d]thiazole
Similarity: 0.86
A542206 [2407-11-6]
2-Chloro-6-nitrobenzo[d]thiazole
Similarity: 0.84
A574445 [933725-07-6]
Benzo[d]thiazol-5-ylmethanamine
Similarity: 0.72
A198280 [70202-00-5]
7-chloro-benzothiazol-6-ylamine
Similarity: 0.69