*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
3-Aminopropylphosphonic acid is a GABAB receptor agonist with an IC50 of 1.5 μM.
Synonyms: (3-Aminopropyl)phosphonic acid; 3-APPA; NSC 133832
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Using phosphonic acid monolayers to control CO2 adsorption and hydrogenation on Pt/Al2O3
Zachary Blanchette ; Xinpei Zhou ; Daniel Schwartz ; J. Will Medlin ;
Abstract: Phosphonic acid (PA) self-assembled monolayers (SAMs) were deposited onto Pt/Al2O3 catalysts to enable control over CO2 adsorption and CO2 hydrogenation activity. Significant differences in catalytic activity toward CO2 hydrogenation (reverse water-gas shift, RWGS) were observed after coating Al2O3 with PAs, suggesting that the reaction was mediated by CO2adsorption on the support. Amine-functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i.e., spacing between the amine functional group and phosphonate attachment group). One amine-PA and one alkyl-PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA-modified catalyst was found to bind CO2 as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2 adsorption uptake by approximately 50% compared to unmodified 5%Pt/Al2O3. CO2 adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2 hydrogen rate trending as uncoated > C3NH2PA > C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3support by the PAs.
Show More >
Zhou, Xinpei ; Falconer, John L ; Medlin, J Will ;
Abstract: Adsorptive separation of propylene (C3H6) and propane (C3H8) is an alternative to energy intensive distillation, but improving kinetic selectivity is challenging for molecules with similar sizes. Composite materials consisting of a barrier organic film on the external surface of a zeolite have shown higher selectivity; however, structure-function relationships for these materials are lacking. Here, gas adsorption rates on zeolite 5A were controlled by varying the terminal functional group (amine or carboxylic acid) and coating density of organic phosphonic acid (PA) modifiers. Single-gas, pressure-decay adsorption measurements showed that with a complete n-butylphosphonic acid (BPA) monolayer, the C3H6/C3H8 kinetic selectivity was >5 initially, and it approached the equilibrium selectivity of ~1.2 after 20 min, whereas a coating of 4-phosphonobutyric acid (COOHC3PA) with a similar chain length as BPA yielded a selectivity of 15 at 60 min. Coating with 3-aminopropyl phosphonic acid (NH2C3PA) resulted in high resistance to gas diffusion. To investigate whether the slow adsorption was attributable to excessive NH2C3PA, the coating density was tuned by varying PA concentration for deposition. As the coating density decreased, the initial adsorption rates increased. With an ~0.1 monolayer NH2C3PA coating, the C3H6/C3H8 kinetic selectivity was >15 for 60 min. Temperature-programmed desorption of n-propylamine suggested that the improved selectivity of NH2C3PA coating may be associated with the affinity of the amine group for the zeolite surface. This study demonstrates that gas adsorption rates and selectivities in zeolites are highly sensitive to the composition and density of monolayer films on the external surface.
Show More >
Keywords: Adsorptive separation ; Zeolite ; Organic coating ; Terminal functional group ; Coating density
Show More >
Tailoring the Near-Surface Environment of Rh Single-Atom Catalysts for Selective CO2 Hydrogenation
Alexander H. Jenkins ; Erin E. Dunphy ; Michael F. Toney ; Charles B. Musgrave ; J. Will Medlin ;
Abstract: We used a combination of experimental spectroscopies, density functional theory calculations, and CO2 hydrogenation studies to investigate the effects of modifying single-atom Rh1/TiO2 catalysts with functionalized phosphonic acid monolayers. We found that the deposition of specific amine-functionalized ligands resulted in an ∼8× increase in site-specific CO2 reduction turnover frequency at 150 °C and a ∼ 2× increase at 250 °C. On-stream stability also improved following ligand deposition. The effect of the modifier on reactivity was highly sensitive to the proximity of the amine functional group to the surface, which was controlled by adjusting the length of the phosphonic acid tail. Furthermore, deposition of alkyl phosphonic acids without an amine functional group resulted in blocked CO2 adsorption and a near-complete loss of catalytic activity. Infrared spectroscopy studies suggested that the amine group provided binding sites for CO2 that enabled hydrogenation when the amine was positioned near a Rh1 site. Phosphonic acid-modified catalysts also exhibited high selectivity to CO over the series product methane; the selectivity effect was traced to modification of the Rh1 sites to favor CO desorption. Phosphonic acid deposition resulted in 80–90% loss of accessible Rh1 sites, likely due to blocking by tail groups. However, even with the loss of sites, under low-temperature reaction conditions, the rates of CO2 hydrogenation were improved with the coatings, indicating that the remaining sites are highly efficient. Organic functionalization of the supports for atomically dispersed catalysts offers the opportunity to precisely control the positioning of functional groups in the vicinity of a well-defined active site, potentially enabling an additional level of control over active site design.
Show More >
Keywords: CO2 reduction ; bifunctional catalyst ; self-assembled monolayers ; selectivity promoters ; atomically dispersed catalyst
Show More >
Tailoring the Surfaces of Supported Metal Catalysts with Organic Monolayers
Alexander H. Jenkins ;
Abstract: Heterogeneous catalysts are preferred over other catalytic systems for a wide variety of applications due to their high activity and reusability. Oxide-supported metal catalysts, typically consisting of transition metal nanoparticles anchored to a metal oxide carrier, are one of the most common classes of heterogeneous catalysts due to the high surface area of dispersed metal nanoparticles. Yet despite their frequent use, these catalysts still face considerable limitations such as low thermostability and the inability to independently tune interactions with different reactants. One promising strategy towards overcoming these limitations is the use of organic self-assembled monolayers to modify the surface and near-surface environment of heterogeneous catalysts. In this thesis, we investigate the effects of organic monolayers on the catalytic performance and surface properties of supported metal catalysts and develop broadly applicable approaches towards enhancing catalyst efficiency via rational catalyst design. When supported metal catalysts are exposed to elevated temperatures, metal adatoms on the oxide support become increasingly mobile, leading to metal nanoparticle sintering and loss of active sites. Organophosphonic acids were deposited onto the oxide support of Au/TiO2 and Pt/TiO2 catalysts and imaged with transmission electron spectroscopy. These monolayers were observed to prevent metal sintering at elevated temperatures while metal dispersion decreased significantly for unmodified catalysts. However, these ligands were also observed to block or alter active sites at the metal – support interface. This led to significantly suppressed CO oxidation rates, particularly on Au/TiO2, as well as improved resistance to the accumulation of surface carbonaceous species during acetelyene hydrogenation, increasing catalyst lifespan. Functionalization of organophospho_x005f_x0002_nic acid ligands to promote ligand – adsorbate interactions could lead to improved rates by adding bifunctionality at the metal – support interface. To further explore the effects of functionalized organic monolayers on adsorbate binding, ligand – adsorbate hydrogen bonding interactions were investigated with density functional the_x005f_x0002_ory quantum mechanical modelling. Molecular adsorption strengths were calculated on thiolate_x005f_x0002_modified fcc (111) surfaces. Ligand – adsorbate hydrogen bonds led to the preferred stabilization of hydroxyl-containing adsorbates, ‘shifting’ conventional linear scaling relations for molecular ad_x005f_x0002_sorption strengths. For hydrogen bonds sufficiently far from the metal surface, this increase in stabilization was solely dependent on the acidities of the hydrogen bonding functional groups, lead_x005f_x0002_ing to a constant shift in scaling across all metal surfaces. However, as the location of the hydrogen bond approached the surface, interactions with the metal strengthened, altering the slope of ad_x005f_x0002_sorption strength scaling. Additionally, conformational changes were found to offset the stabilizing effect of the ligands in sterically crowded systems. Single atom catalysts have received considerable attention due to their high metal dispersion and unique active sites. However these catalysts frequently suffer from poor thermostability due to Ostwald ripening, as well as low activity for certain reactions due to oxidic electronic states of the catalytic metal and an absence of ensemble sites. Organophosphonic acids were deposited onto Rh/TiO2 single atom catalysts to improve stability and activity during CO2 reduction to CO. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) with CO probe molecules was used to verify the presence of Rh1 species and the absence of Rh nanoparticles following Rh/TiO2 synthesis and ligand deposition. Amine-functionalization of the ligand tails resulted in improved selectivity and specific activity towards CO, whereas alkyl ligands resulted in significant losses in activity due to blocked CO2 adsorption. However, the deposition of these organic monolayers also led to a significant loss in available active sites. Distance between the ligand’s terminal amine and phosphorus head group was also found to significantly affect both specific activity as well as site blocking.
Show More >
CAS No. : | 13138-33-5 |
Formula : | C3H10NO3P |
M.W : | 139.09 |
SMILES Code : | C([P](O)(O)=O)CCN |
Synonyms : |
(3-Aminopropyl)phosphonic acid; 3-APPA; NSC 133832
|
MDL No. : | MFCD00008222 |
InChI Key : | GSZQTIFGANBTNF-UHFFFAOYSA-N |
Pubchem ID : | 97587 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Tags: 3-Aminopropylphosphonic acid | (3-Aminopropyl)phosphonic acid | Other Synthetic Reagents | Synthetic Reagents | 13138-33-5
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL