Home Cart Sign in  
Chemical Structure| 56467-43-7 Chemical Structure| 56467-43-7

Structure of 56467-43-7

Chemical Structure| 56467-43-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Kim, Kyungtae ; Grummon, Benjamin C ; Thrasher, Carl J ; Macfarlane, Robert J ;

Abstract: Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses. Here, a method of synthesizing composites using UV-crosslinkable brush-coated nanoparticles (referred to as UV-XNPs) is introduced that can be applied to various monomer compositions by incorporating photoinitiators into the polymer brushes. UV crosslinking of processed UV-XNP structures can increase their tensile modulus up to 15-fold without any noticeable alteration to their appearance or shape. By using photomasks to alter UV intensity across a sample, intentionally designed inhomogeneities in crosslink density result in predetermined anisotropic shape changes under strain. This unique capability of UV-XNP materials is applied to stiffness-patterned flexible electronic substrates that prevent the delamination of rigid components under deformation. The potential of UV-XNPs as functional, soft device components is further demonstrated by wearable devices that can be modified post-fabrication to customize their performance, permitting the ability to add functionality to existing device architectures.

Keywords: composites ; nanoparticles ; photocrosslinking ; polymers ; processing

Purchased from AmBeed:

Alternative Products

Product Details of [ 56467-43-7 ]

CAS No. :56467-43-7
Formula : C17H14O3
M.W : 266.29
SMILES Code : CC(C(OC1=CC=C(C(C2=CC=CC=C2)=O)C=C1)=O)=C
MDL No. :MFCD30470334
InChI Key :RYWGNBFHIFRNEP-UHFFFAOYSA-N
Pubchem ID :11230895

Safety of [ 56467-43-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P264-P270-P271-P280-P301+P312-P302+P352-P304+P340-P305+P351+P338-P330-P332+P313-P337+P313-P362-P403+P233-P405-P501
 

Historical Records

Technical Information

Categories