Structure of 56962-11-9
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 56962-11-9 |
Formula : | C7H5ClO2 |
M.W : | 156.57 |
SMILES Code : | ClC1=C(C=O)C=CC(=C1)O |
MDL No. : | MFCD00052184 |
InChI Key : | ZMOMCILMBYEGLD-UHFFFAOYSA-N |
Pubchem ID : | 185363 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 38.86 |
TPSA ? Topological Polar Surface Area: Calculated from |
37.3 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.24 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.97 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.86 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.39 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.14 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.52 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.8 |
Solubility | 2.48 mg/ml ; 0.0159 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.34 |
Solubility | 7.14 mg/ml ; 0.0456 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.37 |
Solubility | 0.663 mg/ml ; 0.00424 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.57 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.09 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70% | With potassium carbonate; In water; N,N-dimethyl-formamide; | Reference Example 20 -chloro-4-methoxybenzaldehyde To a solution of 2-chloro-4-hydroxybenzaldehyde (2 g, 12.8 mmol) in N,N-dimethylformamide (25 mL) were added potassium carbonate (3.46 g, 25 mmol) and methyl iodide (large excess) and the mixture was stirred at room temperature for 18 h. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give an almost pure title compound (1.55 g, 70percent). 1H-NMR (delta ppm, CDCl3): 3.89 (3H, s), 6.84-6.95 (2H, m), 7.90 (1H, d, J=8.8 Hz), 10.33 (1H, s) |
With potassium carbonate; In N,N-dimethyl-formamide; at 20℃; for 5h; | Reference Example 49 2-Chloro-4-methoxybenzyl bromide To a suspension of 2-chloro-4-hydroxybenzaldehyde (0.50 g) and potassium carbonate (1.1 g) in N,N-dimethylformamide (5 mL) was added methyl iodide (0.40 mL) at room temperature, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was poured into water, and the resulting mixture was extracted with diethyl ether. The extract was washed with water and brine successively, and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give 2-chloro-4-methoxybenzaldehyde (0.54 g). The title compound was prepared in a similar manner to that described in Reference Example 45 using this material instead of 4-isobutylbenzaldehyde. | |
Reference Example 8 2-chloro-4-methoxybenzaldehyde To suspension of sodium hydride (2.6 g; 62.6percent in oil) in dimethylformamide (80 ml), a solution of 2-chloro-4-hydroxybenzaldehyde (10.0 g) in dimethylformamide (50 ml) was dropped over 15 minutes. The mixture was stirred for 30 minutes. Methyl iodide (4.2 ml) was dropped into the reaction mixture over 10 minutes at 0 C, and stirred for 1 hour. The reaction mixture was poured into water and extracted with hexane / ethyl acetate (1: 1) The organic layer was washed with water and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate and concentrated to give the title compound (10.7 g) having the following physical data. TLC: Rf 0.61 (hexane: ethyl acetate = 3: 1); NMR (300MHz, CDCl3): delta 10.33 (d, J = 0.6Hz, 1H), 7.90 (d, J = 9.0Hz, 1H), 6.94 (d, J = 2.4Hz, 1H), 6.89 (ddd, J = 9.0, 2.4, 0.6Hz, 1H), 3.89 (s, 3H). |
With potassium carbonate; In acetonitrile; at 50℃; | Acetonitrile (70 ml), potassium carbonate (1.7 g, 12.3 mmol) and methyl iodide (0.71 ml, 12.3 mmol) were added to 2-chloro-4-hydroxybenzaldehyde (1.5 g, 9.6 mmol), and the mixture was stirred overnight at 50° C. A treatment according to a conventional method using ethyl acetate as an extraction solvent gave a crude product. The obtained crude product was dissolved in ethanol (30 ml) and sodium borohydride (433 mg, 9.6 mmol) were added, and the mixture was stirred overnight at room temperature. A treatment according to a conventional method using ethyl acetate as an extraction solvent gave a crude product. The obtained crude product was dissolved in thionyl chloride (5 ml) and, after stirring at room temperature for 4 hr, treated according to a conventional method using ethyl acetate as an extraction solvent. The obtained crude product was dissolved in dimethyl sulfoxide (30 ml), sodium cyanide (470 mg, 9.6 mmol) was added, and the mixture was stirred overnight at room temperature. A treatment according to a conventional method using ethyl acetate as an extraction solvent gave a crude product, which was successively purified by silica gel column chromatography to give a nitrile intermediate (770 mg, 4.25 mmol). 1H-NMR (300 MHz, CDCl3) delta 3.76 (2H, s), 3.81 (3H, s), 6.84 (1H, dd), 6.96 (1H, d), 7.38 (1H, d) | |
With potassium carbonate; In acetonitrile; at 20℃; | To the solution of compound B8 (10 g, 64.1 mmol) in 100 ml. of CH3CN was added K2CO3 (18.0 g, 130.4 mmol) and MeI (20 mL, 321.0 mmol). The reaction was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure to give 11 g of crude compound E2 used into the following reduction without the further purification. | |
With potassium carbonate; In N,N-dimethyl-formamide; at 25℃; for 16h; | To a mixture of 2-chloro-4-hydroxybenzaldehyde (5 g, 31.94 mmol, 1.00 equiv) in N,N-dimethylformamide (80 mL) with potassium carbonate (9 g, 65.12 mmol, 2.04 equiv) was added CH3I (9 g, 63.41 mmol, 1.99 equiv). The reaction mixture was stirred for 16 h at 25°C. Water was added and the mixture was extracted with ethyl acetate thrice. The combined extracts were concentrated and chromatograph on silica gel (10:1 PE/EA) to yield 2-chloro-4- methoxybenzaldehyde as a light white solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70.4% | General procedure: To a solution of 1-tritylimidazole (8.12 g, 26.160 mmol) in anhydrous THF (165 mL) was added n-BuLi (1.28 M in THF, 20.0 mL, 1.67 g, 13.08 mmol) at -20°C over a period of 20 min under nitrogen atmosphere. The red solution was allowed to attain room temperature and stirred for 1 h, then cooled to -78°C. In a separate flask the appropriate aldehyde 1a?c (10.47 mmol) was dissolved in anhydrous THF (4 mL) and added to the red solution dropwise at -78 °C. The reaction mixture was stirred at -78°C for 1 h and slowly brought to room temperature during which red color tuned to yellow and then to colorless. After complete reaction, saturated NH4Cl (250 mL) was added to the reaction mixture at -78°C. The resulting mixture was extracted with EtOAc (3 x 100 mL); the organic layer was separated, washed with water, saturated NaCl, and dried over anhydrous Na2SO4. The organic layer was evaporated in vacuo and the residue washed with cold CH2Cl2. |
A238886 [56962-10-8]
2-Chloro-3-hydroxybenzaldehyde
Similarity: 0.94
A161922 [1829-33-0]
3-Chloro-5-hydroxybenzaldehyde
Similarity: 0.94
A145442 [54439-75-7]
2-Chloro-4-methoxybenzaldehyde
Similarity: 0.92
A250664 [78443-72-8]
2,4-Dichloro-6-hydroxybenzaldehyde
Similarity: 0.90
A181530 [18362-30-6]
2-Chloro-6-hydroxybenzaldehyde
Similarity: 0.90
A238886 [56962-10-8]
2-Chloro-3-hydroxybenzaldehyde
Similarity: 0.94
A161922 [1829-33-0]
3-Chloro-5-hydroxybenzaldehyde
Similarity: 0.94
A145442 [54439-75-7]
2-Chloro-4-methoxybenzaldehyde
Similarity: 0.92
A250664 [78443-72-8]
2,4-Dichloro-6-hydroxybenzaldehyde
Similarity: 0.90
A181530 [18362-30-6]
2-Chloro-6-hydroxybenzaldehyde
Similarity: 0.90
A238886 [56962-10-8]
2-Chloro-3-hydroxybenzaldehyde
Similarity: 0.94
A161922 [1829-33-0]
3-Chloro-5-hydroxybenzaldehyde
Similarity: 0.94
A145442 [54439-75-7]
2-Chloro-4-methoxybenzaldehyde
Similarity: 0.92
A250664 [78443-72-8]
2,4-Dichloro-6-hydroxybenzaldehyde
Similarity: 0.90
A181530 [18362-30-6]
2-Chloro-6-hydroxybenzaldehyde
Similarity: 0.90