Home Cart Sign in  
Chemical Structure| 933-99-3 Chemical Structure| 933-99-3

Structure of 933-99-3

Chemical Structure| 933-99-3

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Sakai, Miharu ; Mori, Jiro F ; Kanaly, Robert A ;

Abstract: Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,β-unsaturated aldehydes from alkylated phenols. Until now, α,β-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,β-unsaturated aldehydes, and toxic potential during spilled oil biodegradation.

Keywords: APAH ; CA-PAH ; Lubricating base oil ; Butylnaphthalene ; Sphingobium ; Biotransformation

Purchased from AmBeed: ; ;

Alternative Products

Product Details of [ 933-99-3 ]

CAS No. :933-99-3
Formula : C8H10O2
M.W : 138.16
SMILES Code : CCC1=CC=CC(O)=C1O
MDL No. :MFCD21604516
Boiling Point : No data available
InChI Key :UUCQGNWZASKXNN-UHFFFAOYSA-N
Pubchem ID :70278

Safety of [ 933-99-3 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P280-P305+P351+P338-P310

Computational Chemistry of [ 933-99-3 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.25
Num. rotatable bonds 1
Num. H-bond acceptors 2.0
Num. H-bond donors 2.0
Molar Refractivity 40.26
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

40.46 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.81
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.43
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.66
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.48
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.65
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.61

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.98
Solubility 1.46 mg/ml ; 0.0106 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.88
Solubility 1.8 mg/ml ; 0.013 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.01
Solubility 1.35 mg/ml ; 0.00977 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

Yes
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.13 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

1.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.0
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 933-99-3 ]

Aryls

Chemical Structure| 2138-48-9

A217742 [2138-48-9]

3-Isopropylbenzene-1,2-diol

Similarity: 0.94

Chemical Structure| 1300-94-3

A213022 [1300-94-3]

5-Methyl-2-pentylphenol

Similarity: 0.91

Chemical Structure| 1006-59-3

A227337 [1006-59-3]

2,6-Diethylphenol

Similarity: 0.91

Chemical Structure| 2349-70-4

A245785 [2349-70-4]

2-Ethylbenzene-1,4-diol

Similarity: 0.91

Chemical Structure| 27193-86-8

A564682 [27193-86-8]

4-Dodecylphenol, mixture of isomers

Similarity: 0.88