Home Cart Sign in  
Chemical Structure| 980-26-7 Chemical Structure| 980-26-7

Structure of 980-26-7

Chemical Structure| 980-26-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 980-26-7 ]

CAS No. :980-26-7
Formula : C22H16N2O2
M.W : 340.37
SMILES Code : C3=C2C(C1=CC(=CC=C1NC2=CC4=C3NC5=C(C4=O)C=C(C)C=C5)C)=O
MDL No. :MFCD00071968
InChI Key :TXWSZJSDZKWQAU-UHFFFAOYSA-N
Pubchem ID :70423

Safety of [ 980-26-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H413
Precautionary Statements:P264-P270-P273-P301+P312-P330-P501

Computational Chemistry of [ 980-26-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 26
Num. arom. heavy atoms 22
Fraction Csp3 0.09
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 2.0
Molar Refractivity 107.64
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

65.72 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.81
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

4.76
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

4.29
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.59
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

6.2
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

4.13

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-5.58
Solubility 0.000905 mg/ml ; 0.00000266 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-5.87
Solubility 0.000458 mg/ml ; 0.00000135 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-8.91
Solubility 0.000000418 mg/ml ; 0.0000000012 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.0 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.04

Application In Synthesis of [ 980-26-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 980-26-7 ]

[ 980-26-7 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 50-00-0 ]
  • [ 980-26-7 ]
  • [ 130-14-3 ]
  • [ 532-02-5 ]
  • poly(formaldehyde-co-1-naphtalene sulfonic acid sodium salt-co-2-naphtalene sulfonic acid sodium salt); 2,9-dimethylquinacridone; mixture of [ No CAS ]
YieldReaction ConditionsOperation in experiment
A one-liter flask equipped with a stirrer, thermometer, condenser and drying tube is charged with 200 ml concentrated (95-98%) sulfuric acid. 17 G 2, 9-DIMETHYLQUINACRIDONE pigment (CROMOPHTALS PINK PT, Ciba Specialty Chemicals Inc.) is added at a temperature below 45oC and the mixture is stirred for 10 minutes at 40-45oC to completely dissolve the pigment. 19.9 g of a wet naphthalene sulfonic acid sodium salt presscake with a solid content of 58%, a mixture containing 80% 1-naphthalene sulfonic acid sodium salt and 20% 2- naphthalene sulfonic acid sodium salt (Shanghai Shen Li Chemical Factory) are added at a temperature BELOW 45oC and the mixture is stirred for 30 minutes at 40-45oC followed by the rapid addition of 1.6 g para formaldehyde. The reaction mixture is stirred for one hour at 58-60oC then poured into 2.5 liter ice water. The bluish violet precipitate is stirred for 1 hour at 5-20oC, and then filtered. The violet press cake is washed with water to a pH of 2-2.5 and kept as presscake. About 0.5 g of the press cake are reslurried in 20 ML hot water yielding a magenta colored liquid which is filtered through paper to remove little aggregated material. The filtrate is magenta and appears like a dye solution. However, the electron micrograph shows the 2, 9-dimethyl quinacridone in nanosize particle form with an average particle size of from 10 to 30 nm.
 

Historical Records

Technical Information

Categories