Home Cart Sign in  
Chemical Structure| 214750-72-8 Chemical Structure| 214750-72-8
Chemical Structure| 214750-72-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of Fmoc-N-Me-Arg(Mtr)-OH

CAS No. :214750-72-8
Formula : C32H38N4O7S
M.W : 622.73
SMILES Code : O=C(O)[C@@H](N(C(OCC1C2=C(C3=C1C=CC=C3)C=CC=C2)=O)C)CCCNC(NS(=O)(C4=C(C)C=C(OC)C(C)=C4C)=O)=N
MDL No. :MFCD02094400
InChI Key :LNVHMIGZISCVKC-MHZLTWQESA-N
Pubchem ID :45934233

Safety of Fmoc-N-Me-Arg(Mtr)-OH

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P280-P301+P312-P302+P352-P305+P351+P338

Application In Synthesis of Fmoc-N-Me-Arg(Mtr)-OH

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 214750-72-8 ]

[ 214750-72-8 ] Synthesis Path-Downstream   1~1

  • 1
  • Fmoc-Leu-Wang resin [ No CAS ]
  • [ 214750-72-8 ]
  • [ 258332-56-8 ]
  • [ 71989-31-6 ]
  • [ 71989-23-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • H-propargyl-Gly-N-Me-Arg-Lys-Pro-N-homo-Tyr-Ile-Leu-OH [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase peptide synthesis (SPPS) was performed using a microwave assisted protocol (Discover microwave oven, CEMCorp.) starting from Fmoc-Leu-Wang resin. The reactions were carried out in a silanized glass tube loosely sealed with a silicon septum. Remark: the development of overpressure was avoided by using DMF as the solvent and intermittent cooling in an ethanol-ice bath. The amino acids were incorporated as their commercially available derivatives in the following order: Fmoc-Ile-OH, Fmoc-N-homo-Tyr(tBu)-OH (synthesized according to ref. 18), Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-N-Me-Arg(Mtr)-OH and Fmoc-propargyl-Gly-OH. Elongation of the peptide chain was performedby repetitive cycles of Fmoc deprotection and subsequent couplings of the amino acid. Fmoc deprotection was performed by treating the resin with 25% piperidine in DMF (microwave irradiation: 7 5 s, 100 W), followed by washings with DMF (5). In between each irradiation step, cooling of the reaction mixture to a temperature of 10 C was achieved by sufficient agitation in an ethanol-ice bath. Peptide couplings of Fmoc-Ile-OH, Fmoc-Arg(Pbf)-OH and Fmoc-N-Me-Arg(Mtr)-OH were performed employing 5 equiv of each Fmoc-AA/PyBOP/DIPEA and 7.5 equiv 1-hydroxybenzotriazole (HOBt), dissolved in a minimum amount of DMF (irradiation: 20 10 s, 50W and intermittent cooling). Fmoc-N-homo-Tyr(tBu)-OH (3 equiv) was coupled with 3 equiv PyBOP/DIPEA and 4.5 equiv HOBt in DMF. Fmoc-Pro-OH (5 equiv)and Fmoc-propargyl-Gly-OH (5 equiv) were subjected to a double coupling with HATU (5 equiv) and DIPEA (10 equiv) in DMF. After the last acylation step, the N-terminal Fmoc-residue was deprotected, the resin was 10 rinsed with CH2Cl2 and dried in vacuo. The cleavage from the resin was performed using a mixture of trifluoroacetic acid (TFA)/phenol/H2O/triisopropylsilane (TIS) 88:6:4:2 for 4 h, followed by a filtration of the resin. After evaporation of the solvent in vacuo and precipitation in t-butylmethylether, the crude peptides were purified using preparative RP-HPLC (Agilent 1100 preparative series, column Zorbax Eclipse XDB-C8, 21.2 mm, 150 mm, 5 lm particles, flow rate 10 mL/min) with the solvent system 3-35% acetonitrile in water (0.1% HCO2H) in a linear gradient over 18.0 min, tR: 10.5 min. After the separation, the peptide was lyophilized and peptide purity and identity were assessed by analytical HPLC (Agilent 1100 analytical series, equipped with QuatPump and VWD detector; column ZorbaxEclipse XDB-C8 analytical column, 4.6 mm, 150 mm, 5 lm, flow rate 0.5 mL/min) coupled to a Bruker Esquire 2000 mass detector equipped with an ESI-trap. ESI-TOF high mass accuracy and resolution experiments were performed on a BRUKER maXis MS (BrukerDaltonics, Bremen) in the laboratories of the Chair of OrganicChemistry (Prof. Dr. Rik Tykwinski), Department of Pharmacy and Chemistry, Friedrich-Alexander University of Erlangen Nuremberg. Purity: solvent system 1: 10-55% methanol in water (0.1% HCO2H)in a linear gradient over 18 min, tR = 14.6 min (>99 %); solvent system 2: 3-40% acetonitrile in water (0.1% HCO2H) in a linear gradient over 26 min, tR = 15.9 min (>99%). ESI-MS: m/z calcd:940.6, found: 940.6 [M+H]+; HR-ESI-TOF: [M+H]+ calcd forC45H74N13O9: 940.5732, found: 940.5724.
 

Historical Records

Categories