*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Methylparaben, a natural product isolated and purified from the barks of Tsuga dumosa, is used as a preservative.
Synonyms: Methyl 4-hydroxybenzoate; Methyl p-hydroxybenzoate; Septos
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 99-76-3 |
Formula : | C8H8O3 |
M.W : | 152.15 |
SMILES Code : | O=C(OC)C1=CC=C(O)C=C1 |
Synonyms : |
Methyl 4-hydroxybenzoate; Methyl p-hydroxybenzoate; Septos
|
MDL No. : | MFCD00002352 |
InChI Key : | LXCFILQKKLGQFO-UHFFFAOYSA-N |
Pubchem ID : | 7456 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H303-H315-H317-H412 |
Precautionary Statements: | P501-P261-P273-P272-P264-P280-P302+P352-P312-P362+P364-P333+P313 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
99% | With sodium percarbonate; acetic acid; potassium iodide; In water; for 2.5h; | General procedure: Potassium iodide (2.1 equiv) was added with stirring to 50% (v/v) aq. AcOH (1.0 M) containing a phenol derivative S5, and sodium percarbonate (SPC) (3.8 equiv) was slowly added over 30 min. The stirring was continued for 2.0 h at 50 ºC under a reflux condenser. After cooling, the reaction mixture was slowly poured into a vigorously stirred biphasic mixtures made of CH2Cl2 and saturated aqueous Na2SO3. Separated aqueous layer was extracted twice with CH2Cl2. The combined organic layer was washed with saturated aqueous NaCl. The organic layer was dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by column chromatography to provide 23. |
99% | With acetic acid; periodic acid; potassium iodide; In water; at 60℃; | 30.4 g of methyl p-hydroxybenzoate was added to a 2 L single-necked flask, 1 L of acetic acid, 500 ml of water, 42.8 g of periodic acid and 66.4 g of potassium iodide were added and reacted at 60 C overnight.The TLC plate showed complete reaction, where the TLC developing agent was PE: EA = 5: 1.The reaction solution was cooled to room temperature, added to 2 L of water, filtered, and the solid was dried with an infrared lamp to obtain 80 g of a yellow solid, that is, a compound having a structure represented by the formula M2-1 in a yield of 99%. |
98.8% | 10 g (65.7 mmol) of p-methoxybenzoate , 80 ml of methanol were added thereto, stirred and dissolved, and 11.3 g of sodium acetate and 7 g of water were added thereto, stirred and dissolved, and 30 g of iodine (118.3 mmo 1) was added thereto, and the temperature was raised to 70 C. After reacting for 2 hours, a sodium hydroxide solution (sodium hydroxide 5.5 g (137.5 mmol) and water 200 ml) was added, and the reaction was kept at 70 C for 2 hours, and the temperature was slowly lowered to room temperature, and 10 g of a 25% sodium hydrogen sulfite solution was added dropwise thereto. The color of the liquid was removed, and the crystals were further stirred for 1 hour, filtered, and the wet product was dried by hot air at 50 for 8 hours to obtain 26.2 g of a white crystalline powder, yield 98.8%. |
86.7% | To methanol (150 mL)Was added methyl p-hydroxybenzoate (10 g, 65.7 mmol)Sodium acetate hydrate (18.78 g, 138 mmol) andIodine (35 g, 137.9 mmol)The resulting mixture was stirred under reflux for 1.5 hours.A solution of sodium hydroxide (5.52 g, 138 mmol)Of water (200 mL)Then reflux for 2.5 hours.Cool to room temperature and add dilute sulfurSodium hydrogen acid solution to the color faded. The filter cake was washed with a small amount of water and then dissolved with ethyl acetate (200 mL), anhydrous sulfuric acidSodium dry. The solvent was evaporated under reduced pressure and the resulting product was recrystallized from petroleum ether / ethyl acetate,4-hydroxy-3,5-diiodobenzoate (11) (23 g). The yield was 86.7%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In acetonitrile; at 60℃; for 5h; | Example 6; Intermediate: 4-14-Methyl-2-(4-trifluoromethvl-phenvl)-thiazol-5-ylmethoxyl-benzoic acid methyl ester; To a mixture of 4-hydroxy-benzoic acid methyl ester (152 mg, 1 mmol) and potassium carbonate (152 mg, 1.1 mmol) add acetonitrile (4 mL). To this mixture add 5-bromomethyl-4- methyl-2- (4-trifluoromethyl-phenyl)-thiazole (Example 4, 314 mg, 1 mmol). Warm the resulting reaction mixture to 60°C, and stir at this temperature for 5 hrs. Cool the mixture to room temperature, dilute with ethyl acetate, wash with water, then brine, dry over MgS04, filter and concentrate to give the title compound as a white solid (364 mg). MS (ESI) m/z 408 (M+H) ; H1 NMR (CDCl3) 8 2.53 (s, 3H), 3.90 (s, 3H), 4.52 (s, 2H), 7.00 (d, J = 9Hz, 2H), 7.68 (d, J = 8Hz, 2H), 8.02 (m, 4H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triphenylphosphine;SiO2; In methanol; dichloromethane; | Part B. Methyl 4-[3-(1-Pyrrolidinyl)propoxy]benzoate STR40 A solution of 6.25 g (23.8 mmol) of triphenylphosphine, 3.30 g (21.7 mmol) of methyl 4-hydroxybenzoate, and 2.80 g (21.7 mmol) of 1-(3-hydroxypropyl)pyrrolidine in 100 mL of CH2 Cl2 was treated with 3.80 mL (24.1 mmol) of diethyl azodicarboxylate in a dropwise manner. The reaction was stirred at ambient temperature for 16 h and was quenched by the addition of 20 mL of brine. The two layers were separated, and the organic layer was dried over K2 CO3 and concentrated to give 6.10 g of an oily solid which was purified by flash chromatography (SiO2; 0-5percent MeOH in CH2 Cl2) to afford 2.46 g (9.34 mmol; 43percent) of the desired product. FDMS 263 (M+; 100); HRMS Calcd for C15 H21 NO3: 264.1600. Found: 264.1609. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87.7% | With potassium carbonate; In Isopropyl acetate; water; | EXAMPLE 4 Preparation of 4-(2-piperidinoethoxy)benzoic acid hydrochloride To a 250 mL 3 neck flask equipped with mechanical stirring, condenser, and heating apparatus consisting of a RTD probe hooked via a temperature controller to a heating mantle and under nitrogen atmosphere, the following were added: 7.61 g methyl 4-hydroxybenzoate, 11.05 g beta-chloroethylpiperidine hydrochloride, 16.59 g powdered potassium carbonate, and 60 mL isopropyl acetate. The mixture was heated slowly to 80° C. After 5 hours, high performance liquid chromatography showed reaction to be 90percent complete. After being left overnight at 80° C., reaction was complete. The mixture was then cooled to ambient temperature, after which 60 mL deionized water was added. The mixture was stirred until all solids dissolved. The aqueous layer was separated and discarded. The organic layer was extracted 3 times with 20 mL 4N hydrochloride. The combined aliquots, containing 4-(2-piperidinoethoxy)benzoic acid, ethyl ester, were heated at reflux (92° C., 30 minutes required to reach reflux). After 7.5 hours at reflux, the mixture was then distilled to remove approximately 10 mL water and cooled in an ice bath for 15 minutes. The resulting crystalline 4-(2-piperidinoethoxy)benzoic acid, hydrochloride was removed by filtration and rinsed with acetone and dried. Yield=12.53 g of product (87.7percent of theoretical). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In water; ethyl acetate; | EXAMPLE 9 Preparatlon of 4-(2-piperidinoethoxy)benzoic acid hydrochloride To a 250 mL 3 neck flask with mechanical stirring and condenser, and a heating apparatus consisting of an RTD probe in the flask hooked via a temperature controller to a heating mantle and under nitrogen atmosphere, the following was added: 7.61 g of methyl 4-hydroxybenzoate, 11.05 g of beta-chloroethylpiperidine hydrochloride, 16.59 g of powdered potassium carbonate and 60 mL of ethyl acetate. The mixture was heated slowly to reflux. After overnight reflux, the mixture was cooled to ambient temperature, after which 60 mL of deionized water was added. The aqueous layer was separated and discarded. The organic layer was extracted with 4N hydrochloride (3 aliquots of 20 mL). The combined acid extracts were heated to reflux. After 1 hour at reflux, HPLC indicated the saponification to be 60percent complete. After 4 hours, the reaction was near 100percent complete. The mixture was cooled to 0° C.-5° C. and stirred. The resulting crystals were filtered, rinsed with acetone and dried. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95.3% | With potassium carbonate; In Isopropyl acetate; water; | a. To a 250 mL 3 neck flask, with mechanical stirring, condenser, and RTD probe were added the following under nitrogen atmosphere: 0.05 mol methyl 4-hydroxybenzoate, 0.06 mol beta-chloroethylpiperidine hydrochloride, 16.59 grams of potassium carbonate, and 60 mL of isopropyl acetate. The mixture was heated at 75° C.-80° C. for 20 hours, at which time all the methyl 4-hydroxybenzoate was consumed. 60 mL of water was then added to dissolve the potassium carbonate. The organic and aqueous phases were then Separated and the aqueous layer discarded. The organic layer was washed with a second 60 mL aliquot of water; the layers were separated and the aqueous layer discarded. The reaction product, 4-(2-piperidinoethoxy)benzoic acid, methyl ester, was then extracted into 25 mL 8N hydrochloric acid. The aqueous phase was separated and the organic phase discarded. The aqueous phase was refluxed in a 50 mL round bottomed flask with magnetic stirring and condenser for 48 hours. The mixture was then cooled to 0° C.-5° C. and the crystals removed by filtration. The crystals were rinsed with acetone and dried overnight in 50° C. vacuum oven. 13.63 g of 4-(2-piperidinoethoxy)benzoic acid hydrochloride were recovered, which is 95.3percent of the theoretical yield. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
12.61 g (83.6% theoretical) | With hydrogenchloride; potassium carbonate; In water; | EXAMPLE 5 Preparation of 4-(2-piperidinoethoxy)benzoic acid hydrochloride To a 125 mL 3 neck flask with mechanical stirring, condenser, and a heating apparatus consisting of an RTD probe hooked via a temperature controller to a heating mantle, the following were added: 7.61 g methyl 4-hydroxybenzoate, 11.05 g beta-chloroethylpiperidine hydrochloride, 16.59 g powdered potassium carbonate, and 60 mL amyl acetate. The mixture was heated in an oil bath under nitrogen to 115° C.-120° C. for 4 hour. HPLC indicated that the reaction was complete. The mixture was then cooled to ambient temperature and 40 mL of deionized water were added to dissolve solids. The aqueous layer was separated and discarded and the water wash was repeated. 5 mL of the organic phase was removed as an analytical standard. 25 mL 8N hydrochloric acid was added to remaining organic phase to extract the intermediate. The layers were separated and the acidified aqueous layers returned to the reaction flasks. The organic phase was discarded. The aqueous phase was heated to 95° C. until HPLC indicated complete hydrolysis of the ester (about 4 hours). The mixtures were cooled to 0° C.-5° C. for 1 hour and filtered. The filter cakes were rinsed with acetone (approx. 25 mL) and dried. Yield 12.61 g (83.6percent theoretical). |
With hydrogenchloride; potassium carbonate; In water; acetone; | EXAMPLE 7 Preparation of 4-(2-piperidinoethoxy)benzoic acid hydrochloride To a 125 mL 3 neck flask with mechanical stirring, condenser, and a heating apparatus consisting of an RTD probe in the flask hooked via a temperature controller to a heating mantle, the following were added: 7.61 g methyl 4-hydroxybenzoate, 11.05 g beta-chloroethylpiperidine hydrochloride, 16.59 g powdered potassium carbonate, and 60 mL amyl acetate. The mixture was heated overnight under nitrogen in an oil bath to 125° C., and was allowed to proceed until HPLC indicated complete consumption of the methyl 4-hydroxybenzoate. The mixture was cooled to ambient temperature and 40 mL deionized water was added to dissolve the solids. The aqueous layer was separated and discarded. The water wash was repeated. 25 mL of 8N hydrochloric acid were added to extract intermediate. The layers were separated and the acid layer returned to the reaction flask. The acid solution was heated to 95° C. for about 24 hours as a "stress" test; (after 6 hours 1percent of the uncleaved ester remained.) The mixture was cooled to 40° C. and 25 mL acetone added. The mixture was cooled to 0° C.-5° C. for 1 hour. The mixture was filtered and the cakes rinsed with approx. 25 mL acetone and dried. Yield=12.0 g (84.1percent of theoretical). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In dichloromethane; acetone; | Preparation 2 4-(2-piperidinoethoxy) benzoic acid hydrochloride Into a 50 ml round bottom flask is placed 6.40 g (33.6 mmol) of p-toluenesulfonyl chloride and 25 ml of methylene chloride. The resulting solution is cooled with an ice bath as 4.00 g (31.0 mmol) of 1-piperidinoethanol in 6 ml of methylene chloride is added dropwise. After the addition is complete, the ice bath is removed and the resulting slurry is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a solid residue. The solid residue is transferred to a 100 ml round bottom flask with 45 ml of amyl acetate. Potassium carbonate (6.87 g, 49.7 mmol) and methyl 4-hydroxybenzoate (2.82 g, 18.5 mmol) are added to the slurry. The resulting mixture is heated to 145° C. for 2 hours. The reaction mixture is cooled to room temperature and washed twice with water. The organic layer is extracted with 11 ml of 8N hydrochloric acid. The aqueous layer is heated at gentle reflux for 3 hours. The resulting slurry is cooled to 50° C. and 11 ml of acetone is added. The slurry is cooled to 0°-5° C. and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50° C. in vacuo to yield 920 mg of product, (17percent). | |
With potassium carbonate; In dichloromethane; acetone; | Example 2 Preparation of 4-(2-piperidinoethoxy) benzoic acid hydrochloride Into a 50 ml round bottom flask is placed 6.40 g (33.6 mmol) of p-toluenesulfonyl chloride and 25 ml of methylene chloride. The resulting solution is cooled with an ice bath as 4.00 g (31.0 mmol) of 1-piperidinoethanol in 6 ml of methylene chloride is added dropwise. After the addition is complete, the ice bath is removed and the resulting slurry is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a solid residue. The solid residue is transferred to a 100 ml round bottom flask with 45 ml of amyl acetate. Potassium carbonate (6.87 g, 49.7 mmol) and methyl 4-hydroxybenzoate (2.82 g, 18.5 mmol) are added to the slurry. The resulting mixture is heated to 145°C for 2 hours. The reaction mixture is cooled to room temperature and washed twice with water. The organic layer is extracted with 11 ml of 8 N hydrochloric acid. The aqueous layer is heated at gentle reflux for 3 hours. The resulting slurry is cooled to 50°C and 11 ml of acetone is added. The slurry is cooled to 0-5°C and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50°C in vacuoto yield 920 mg of product, (17percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In dichloromethane; 1-pentyl acetate; acetone; | Preparation 3 4-(2-piperidinoethoxy) benzoic acid hydrochloride Into a 50 ml round bottom flask is placed 4.93 g (27.0 mmol) of 2,2,2-trifluoroethanesulfonyl chloride and 25 ml of methylene chloride. The resulting solution is cooled with an ice bath as 3.22 g (24.9 mmol) of 1-piperidinoethanol in 7 ml of methylene chloride is added dropwise. After the addition is complete, the ice bath is removed and the resulting slurry is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a waxy residue. The solid residue is slurried in 45 ml of amyl acetate and then potassium carbonate (5.50 g, 39.9 mmol) and methyl 4-hydroxybenzoate (2.26 g, 14.8 mmol) are added. The resulting mixture is heated to 140° C. for 2 hours. The reaction mixture is cooled to room temperature and washed twice with water and the organic layer is extracted with 10.5 ml of 8N hydrochloric acid. The aqueous layer is heated at gentle reflux for 4 hours. The resulting slurry is cooled to 50° C. and 11 ml of acetone is added. The slurry is cooled to 0°-5° C. and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50° C. in vacuo to yield 3.94 g of product, (90percent). | |
With potassium carbonate; In dichloromethane; 1-pentyl acetate; acetone; | Example 3 Preparation of 4-(2-piperidinoethoxy) benzoic acid hydrochloride Into a 50 ml round bottom flask is placed 4.93 g (27.0 mmol) of 2,2,2-trifluoroethanesulfonyl chloride and 25 ml of methylene chloride. The resulting solution is cooled with an ice bath as 3.22 g (24.9 mmol) of 1-piperidinoethanol in 7 ml of methylene chloride is added dropwise. After the addition is complete, the ice bath is removed and the resulting slurry is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a waxy residue. The solid residue is slurried in 45 ml of amyl acetate and then potassium carbonate (5.50 g, 39.9 mmol) and methyl 4-hydroxybenzoate (2.26 g, 14.8 mmol) are added. The resulting mixture is heated to 140°C for 2 hours. The reaction mixture is cooled to room temperature and washed twice with water and the organic layer is extracted with 10.5 ml of 8 N hydrochloric acid. The aqueous layer is heated at gentle reflux for 4 hours. The resulting slurry is cooled to 50°C and 11 ml of acetone is added. The slurry is cooled to 0-5°C and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50°C in vacuoto yield 3.94 g of product, (90percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With thionyl chloride; potassium carbonate; In dichloromethane; water; acetone; | Preparation 1 4-(2-piperidinoethoxy) benzoic acid hydrochloride Into a 500 ml round bottom flask is placed 23.38 g (197 mmol) of thionyl chloride and 140 ml of methylene chloride. The resulting solution is cooled with an ice bath as 21.91 g (170 mmol) of 1-piperidinoethanol in 30 ml of methylene chloride is added over 30 minutes. After the addition is complete, the ice bath is removed and the mixture is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a solid residue. Amyl acetate (225 ml), potassium carbonate (34.4 g, 249 mmol), and methyl 4-hydroxybenzoate (14.1 g, 92 mmol) are added to the residue. The resulting slurry is heated to 135° C. for 5 hours. The reaction mixture is cooled to room temperature and washed twice with 100 ml of water. The organic layer is extracted with 53 ml of 8N hydrochloric acid. The aqueous layer is heated at gentle reflux for 4 hours. The resulting slurry is cooled to 50° C. and 50 ml of acetone is added. The slurry is cooled to 0°-5° C. and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50° C. in vacuo to yield 17.9 g of product, (67percent). | |
With thionyl chloride; potassium carbonate; In dichloromethane; water; acetone; | Example 1 Preparation of 4-(2-piperidinoethoxy)benzoic acid hydrochloride Into a 500 ml round bottom flask is placed 23.38 g (197 mmol) of thionyl chloride and 140 ml of methylene chloride. The resulting solution is cooled with an ice bath as 21.91 g (170 mmol) of 1-piperidinoethanol in 30 ml of methylene chloride is added over 30 minutes. After the addition is complete, the ice bath is removed and the mixture is stirred for about 12 hours. The reaction mixture is concentrated on a rotary evaporator to yield a solid residue. Amyl acetate (225 ml), potassium carbonate (34.4 g, 249 mmol), and methyl 4-hydroxybenzoate (14.1 g, 92 mmol) are added to the residue. The resulting slurry is heated to 135°C for 5 hours. The reaction mixture is cooled to room temperature and washed twice with 100 ml of water. The organic layer is extracted with 53 ml of 8 N hydrochloric acid. The aqueous layer is heated at gentle reflux for 4 hours. The resulting slurry is cooled to 50°C and 50 ml of acetone is added. The slurry is cooled to 0-5°C and stirred for 1 hour. The product is filtered, washed with cold acetone, and dried at 50°C in vacuoto yield 17.9 g of product, (67percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Polyoxyethyelene(25) cetyl ether: 2.5 g Methyl parahydroxybenzoate: 0.2 g Butyl parahydroxybenzoate: 0.1 g BHT: 0.02 g | ||
Polyoxyethyelene(25) cetyl ether: 1.5 g Methyl parahydroxybenzoate: 0.2 g Butyl parahydroxybenzoate: 0.1 g BHT: 0.02 g | ||
Polyoxyethyelene(25) cetyl ether: 2.5 g Methyl parahydroxybenzoate: 0.2 g Butyl parahydroxybenzoate: 0.1 g BHT: 0 02 g |
Polyoxyethyelene(25) cetyl ether: 2.5 g Methyl parahydroxybenzoate: 0.2 g Butyl parahydroxybenzoate: 0.1 g BHT: 0.02 g | ||
Polyoxyethyelene(25) cetyl ether: 2.5 g Methyl parahydroxybenzoate: 0.2 g Butyl parahydroxybenzoate: 0.1 g BHT: 0.02 g |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
50% | With potassium carbonate; In N,N-dimethyl-formamide; at 125℃; for 16h; | A mixture of -bromo-S-methylpyridine-S-carboxaldehyde (1.44 g, 7.24 mmol), 4- hydroxy-benzoic acid methyl ester (1.52 g, 10.0 mmol) and K2CO3 (1.00 g, 7.24 mmol) in DMF (20 mL) was stirred at 125 0C for 16 h. The mixture was cooled to room temperature and DMF was removed. Aqueous work-up and purification by flash chromatography on silica gel (EtOAc/hexanes, 1:3 in v/v) afforded 4-(5-formyl-3-methyl-pyridin-2-yloxy)-benzoic acid methyl ester as a white solid (0.98 g, 50%). 1H NMR (CDCl3) delta 2.44 (s, 3H), 3.93 (s, 3H), 7.22-7.25 (m, 2H), 8.05 (d, IH, J= 2.1 Hz), 8.11-8.15 (m, 2H), 8.41 (d, IH5 J= 2.1 Hz), 9.96 (S, IH). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70%Chromat.; 25%Chromat. | With Cu2(ophen)2; water; In ethanol; at 20℃;Green chemistry; | General procedure: 4.4. General procedure II for Table 3 A solution of arylboronic acids (1.0 mmol), Cu2(ophen)2 (1.3 mg,0.5 mol percent) in H2O-EtOH (1.8 mL, VH2O:VEtOHn:1) was stirred atroom temperature. After the substrate was consumed, the reactionconversions were determined by GC analysis. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
67.14% | With potassium carbonate; In acetone; for 4h;Reflux; | General procedure: To a solution of various substituted phenols (1 mmol) in dry acetone (30 mL) K2CO3 (1 mmol)and compound 3 or 4 (1 mmol) were added. After being stirred for 4 h at reflux temperature, thereaction mixture was cooled, filtered, and concentrated under vacuum. Then the residue was dilutedwith 30 mL ethyl acetate and sequentially washed with 30 mL 1 M HCl, aq. NaHCO3 solution andbrine in order. The organic layer was dried over MgSO4 and concentrated in vacuo. Purification of theresidue by chromatography on silica gel furnished target compounds. 1H-NMR, 13C-NMR and massspectroscopy (MS) of compounds 5a-m and 6a-m are shown in Supplementary Materials. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
9 g | With caesium carbonate; In N,N-dimethyl-formamide; at 110℃; for 12h; | [0064] Methyl 4-hydroxybenzoate (6.5 g, 49 mmol), <strong>[1480-65-5]5-chloro-2-fluoropyridine</strong> (5.0 g, 33 mmol) and cesium carbonate(20 g, 65 mmol) were dissolved in N,N-dimethyl foramide (50 mL). The reaction solution was refluxed at 110 °C for 12hours, and the completion of reaction was monitored by thin layer chromatography (petroleum ether:ethyl acetate = 5:1),the solvent was rotary dried. The crude compound was partitioned between ethyl acetate (250 mL) and water (250 mL).The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated under a reduced pressure. Thecrude compound was purified and separated by column chromatography to yield the product methyl 4-((5-chloropyridin-2-yl)oxy)benzoate (9.0 g, 93percent).MS: m/z 264.2 [M+1] |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
97% | With potassium carbonate; In N,N-dimethyl-formamide; at 80℃;Inert atmosphere; | To a stirred solution of <strong>[2895-21-8]2-chloro-N-isopropylacetamide</strong> (602 mg, 4.44 mmol) and methyl 4-hydroxybenzoate (500 mg, 3.29 mmol) in DMF (18 mL) at r.t. under N2 was added potassium carbonate (1817 mg, 13.15 mmol) in a single portion. The mixture was heated at 80 ^C overnight, cooled and partitioned between EtOAc and H2O. The layers were separated and the aqueous layer was extracted with EtOAc (2×). The combined organics were washed with H2O and brine, dried (phase sep.) and concentrated to give crude methyl 4-[2-(isopropylamino)-2-oxo- ethoxy]benzoate (870 mg, 3.18 mmol, 97% yield). LC-MS (ES+, Method C): 2.32 min, m/z 252.0 [M+H]+ |
Tags: Methyl paraben | Phenols | Preservative and Disinfectant | Organic Building Blocks | Function | By Structure | 99-76-3
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL