Huang, Yen-Wen; Suazo, Mathew J; Torkelson, John M

DOI:

Abstract

Free-radical reactive processing of thermoplastic polyethylene or ethylene-containing copolymers with a dynamic covalent cross-linker enables the synthesis of covalent adaptable networks (CANs). While effective for polyethylene, this approach is hindered in polypropylene (PP) due to the propensity of tertiary carbon radicals in PP to undergo β-scission during grafting. We have developed PP-based CANs via one-step, radical-based reactive processing using dicumyl peroxide (a radical initiator), bis(4-methacryloyloxyphenyl) disulfide (BPMA, an aromatic disulfidebased dynamic covalent cross-linker), and, to stabilize the radicals and promote cross-linking, vinyl aromatic additives. Adding 2-vinylnaphthalene (VN) at 2.0 or 4.0 mol equiv to BPMA effectively suppressed β-scission in PP and enabled robust CAN formation. Divinylbenzene (DVB) at 0.5 mol equiv to BPMA also enabled PP CAN formation, but due to its additional function as a permanent cross-linker, further increases in DVB level led to the percolation of permanent cross-links and loss of reprocessability. Relative to PP, all PP CANs exhibited significant melt-state creep suppression; the best creep resistance (and highest cross-link density) exhibited by a PP CAN, a factor of 40 better than that of PP, was prepared using a combination of 2.0 mol equiv of VN and 0.5 mol equiv of DVB relative to BPMA. Notably, each PP CAN exhibited complete recovery of cross-link density after two reprocessing cycles. Thus, this study represents a successful, one-step, additive-based approach for making robust and reprocessable PP CANs.

Purchased from AmBeed