Zang, Zhiyu; Duncan, Olivia K; Sabonis, Dziugas; Shi, Yun; Miraj, Gause; Fedorova, Iana; Le, Shuai; Deng, Jun; Zhu, Yuhao; Cai, Yanyao

DOI:

Abstract

The rise of antibiotic resistance motivates a revived interest in phage therapy. However, bacteria possess dozens of anti-bacteriophage immune systems that confer resistance to therapeutic phages. Chemical inhibitors of these anti-phage immune systems could be employed as adjuvants to overcome resistance in phage-based therapies. Here, we report that anti-phage systems can be selectively inhibited by small molecules, thereby sensitizing phage-resistant bacteria to phages. We discovered a class of chemical inhibitors that inhibit the type II Thoeris anti-phage immune system. These inhibitors block the biosynthesis of a histidine-ADPR intracellular ‘alarm’ signal by ThsB and prevent ThsA from arresting phage replication. These inhibitors promiscuously inhibit type II Thoeris systems from diverse bacteria—including antibiotic-resistant pathogens. Chemical inhibition of the Thoeris defense improved the efficacy of a model phage therapy against a phage-resistant strain of P. aeruginosa in a mouse infection, suggesting a therapeutic potential. Furthermore, these inhibitors may be employed as chemical tools to dissect the importance of the Thoeris system for phage defense in natural microbial communities.

Purchased from AmBeed