Wenhsuan Chou; Xiaojie Guo; Liyan Wang; Xin-Hui Xing; Yi Wang; Chong Zhang

DOI: PMID:

Abstract

Pure bacterial cultures are essential for the study of microbial culturomics. Traditional methods based on solid plates, well plates, and micro-reactors are hindered by cumbersome procedures and low throughput, impeding the rapid progress of microbial culturomics research. To address these challenges, we had successfully developed the Single-cell Microliter-droplet Culture Omics System (MISS cell), an automated high-throughput platform that utilizes droplet microfluidic technology for microbial monoclonal isolation, cultivation, and screening. This system can generate a large number of single-cell droplets and cultivate, screen, and collect monoclonal colonies in a short time, facilitating an integrated process from microbial isolation to picking. In this protocol, we demonstrated its application using the isolation and cultivation of human gut microbiota as an example and compared the microbial isolation efficiency, monoclonal culture performance, and screening throughput using the solid-plate culture method. The experimental workflow was simple, and reagent consumption was very low. Compared to solid-plate culture methods, the MISS cell could cultivate a greater diversity of gut microbiota species, offering significant potential and value for microbial culturomics research.

Purchased from AmBeed