There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of Di-n-octylamine
CAS No.: 1120-48-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1120-48-5 |
Formula : | C16H35N |
M.W : | 241.46 |
SMILES Code : | CCCCCCCCNCCCCCCCC |
MDL No. : | MFCD00009557 |
InChI Key : | LAWOZCWGWDVVSG-UHFFFAOYSA-N |
Pubchem ID : | 3094 |
GHS Pictogram: |
![]() ![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H302-H314-H410 |
Precautionary Statements: | P264-P270-P273-P280-P301+P312+P330-P301+P330+P331-P303+P361+P353-P304+P340+P310-P305+P351+P338+P310-P363-P391-P405-P501 |
Class: | 8 |
UN#: | 2735 |
Packing Group: | Ⅲ |
Num. heavy atoms | 17 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 14 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 81.83 |
TPSA ? Topological Polar Surface Area: Calculated from |
12.03 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
4.54 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
6.63 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
5.3 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
4.45 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
5.48 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
5.28 |
Log S (ESOL):? ESOL: Topological method implemented from |
-4.59 |
Solubility | 0.00621 mg/ml ; 0.0000257 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from |
-6.68 |
Solubility | 0.00005 mg/ml ; 0.000000207 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-6.38 |
Solubility | 0.000101 mg/ml ; 0.000000417 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-3.07 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
1.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
1.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<3.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.03 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81%; 18% | With platinum-nickel nanoclusters on activated carbon; hydrogen; at 180℃; under 760.051 Torr;Flow reactor; | General procedure: The reactions were performed in a flow-through reactor at atmospheric pressure and temperature 160-230. The reduced humid catalyst was loaded in the reactor between the glass layers of the nozzle and dried in a hydrogen stream at 120 prior to the reaction. The laboratory-grade reaction was a 12Kh18N10T steel tube (inner diameter 9 mm) put in an electric oven (heating zone height 50 mm). Temperature in the reactor was measured using a thermocouple. Hydrogen feed was adjusted using a GV-7 hydrogen generator. The feeding rate of the starting amines was 0.9 and 3.6 L kgcat-1 h-1 and that of hydrogen was 0.5 L h-1 gcat-1 at atmospheric pressure. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
56%Chromat.; 18%Chromat.; 10%Chromat.; 12%Chromat. | With platinum-doped magnesium oxide; sodium hydroxide; at 150℃; under 750.075 Torr; for 36h;Inert atmosphere; Autoclave; | General procedure: After the reduction under a flow of H2 at 300C for 0.5h, we carried out catalytic tests without exposing the catalyst to air as follows. Methanol (30mmol) was injected to the reduced catalyst inside the glass tube through a septum inlet, thus the catalyst was covered with a layer of methanol to restrict it from air exposure. After removal of the septum under air, amine (1mmol), solid NaOH (1mmol), n-dodecane (0.25mmol) and a magnetic stirrer bar were placed in the tube. The tube was inserted into a stainless-steel autoclave (28cm3) and purged with N2 gas. Finally, the resulting mixture was heated at 150C and stirred under 1barN2. For the model reaction of n-octylamine, the catalyst screening, optimization of reaction conditions, kinetic studies and control reactions, the conversion of n-octylamine and yields of products were determined by GC analyses, using n-dodecane as an internal standard by applying the GC sensitivity of the isolated or commercial products. For the substrate scope study, the products were isolated by column chromatography with silica gel 60 (spherical, 60-100mum, Kanto Chemical Co., Ltd.) using hexane/ethyl acetate or ethyl acetate/methanol as the eluting solvent. The yields of the isolated amine derivatives were determined and identified by 1H and 13C NMR and GC-MS methods. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
62%Chromat.; 11%Chromat.; 5%Chromat. | With rhodium contaminated with carbon; sodium hydroxide; at 150℃; under 750.075 Torr; for 36h;Inert atmosphere; Autoclave; | General procedure: After the reduction under a flow of H2 at 300C for 0.5h, we carried out catalytic tests without exposing the catalyst to air as follows. Methanol (30mmol) was injected to the reduced catalyst inside the glass tube through a septum inlet, thus the catalyst was covered with a layer of methanol to restrict it from air exposure. After removal of the septum under air, amine (1mmol), solid NaOH (1mmol), n-dodecane (0.25mmol) and a magnetic stirrer bar were placed in the tube. The tube was inserted into a stainless-steel autoclave (28cm3) and purged with N2 gas. Finally, the resulting mixture was heated at 150C and stirred under 1barN2. For the model reaction of n-octylamine, the catalyst screening, optimization of reaction conditions, kinetic studies and control reactions, the conversion of n-octylamine and yields of products were determined by GC analyses, using n-dodecane as an internal standard by applying the GC sensitivity of the isolated or commercial products. For the substrate scope study, the products were isolated by column chromatography with silica gel 60 (spherical, 60-100mum, Kanto Chemical Co., Ltd.) using hexane/ethyl acetate or ethyl acetate/methanol as the eluting solvent. The yields of the isolated amine derivatives were determined and identified by 1H and 13C NMR and GC-MS methods. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
55%Chromat.; 14%Chromat.; 6%Chromat.; 12%Chromat. | With iridium on carbon; sodium hydroxide; at 150℃; under 750.075 Torr; for 36h;Inert atmosphere; Autoclave; | General procedure: After the reduction under a flow of H2 at 300C for 0.5h, we carried out catalytic tests without exposing the catalyst to air as follows. Methanol (30mmol) was injected to the reduced catalyst inside the glass tube through a septum inlet, thus the catalyst was covered with a layer of methanol to restrict it from air exposure. After removal of the septum under air, amine (1mmol), solid NaOH (1mmol), n-dodecane (0.25mmol) and a magnetic stirrer bar were placed in the tube. The tube was inserted into a stainless-steel autoclave (28cm3) and purged with N2 gas. Finally, the resulting mixture was heated at 150C and stirred under 1barN2. For the model reaction of n-octylamine, the catalyst screening, optimization of reaction conditions, kinetic studies and control reactions, the conversion of n-octylamine and yields of products were determined by GC analyses, using n-dodecane as an internal standard by applying the GC sensitivity of the isolated or commercial products. For the substrate scope study, the products were isolated by column chromatography with silica gel 60 (spherical, 60-100mum, Kanto Chemical Co., Ltd.) using hexane/ethyl acetate or ethyl acetate/methanol as the eluting solvent. The yields of the isolated amine derivatives were determined and identified by 1H and 13C NMR and GC-MS methods. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
8%Chromat.; 9%Chromat.; 22%Chromat. | With silica-supported platinum; sodium hydroxide; at 150℃; under 750.075 Torr; for 36h;Inert atmosphere; Autoclave; | General procedure: After the reduction under a flow of H2 at 300C for 0.5h, we carried out catalytic tests without exposing the catalyst to air as follows. Methanol (30mmol) was injected to the reduced catalyst inside the glass tube through a septum inlet, thus the catalyst was covered with a layer of methanol to restrict it from air exposure. After removal of the septum under air, amine (1mmol), solid NaOH (1mmol), n-dodecane (0.25mmol) and a magnetic stirrer bar were placed in the tube. The tube was inserted into a stainless-steel autoclave (28cm3) and purged with N2 gas. Finally, the resulting mixture was heated at 150C and stirred under 1barN2. For the model reaction of n-octylamine, the catalyst screening, optimization of reaction conditions, kinetic studies and control reactions, the conversion of n-octylamine and yields of products were determined by GC analyses, using n-dodecane as an internal standard by applying the GC sensitivity of the isolated or commercial products. For the substrate scope study, the products were isolated by column chromatography with silica gel 60 (spherical, 60-100mum, Kanto Chemical Co., Ltd.) using hexane/ethyl acetate or ethyl acetate/methanol as the eluting solvent. The yields of the isolated amine derivatives were determined and identified by 1H and 13C NMR and GC-MS methods. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
7%Chromat.; 22%Chromat.; 9%Chromat.; 33%Chromat. | With sodium hydroxide; at 150℃; under 750.075 Torr; for 36h;Inert atmosphere; Autoclave; | General procedure: After the reduction under a flow of H2 at 300C for 0.5h, we carried out catalytic tests without exposing the catalyst to air as follows. Methanol (30mmol) was injected to the reduced catalyst inside the glass tube through a septum inlet, thus the catalyst was covered with a layer of methanol to restrict it from air exposure. After removal of the septum under air, amine (1mmol), solid NaOH (1mmol), n-dodecane (0.25mmol) and a magnetic stirrer bar were placed in the tube. The tube was inserted into a stainless-steel autoclave (28cm3) and purged with N2 gas. Finally, the resulting mixture was heated at 150C and stirred under 1barN2. For the model reaction of n-octylamine, the catalyst screening, optimization of reaction conditions, kinetic studies and control reactions, the conversion of n-octylamine and yields of products were determined by GC analyses, using n-dodecane as an internal standard by applying the GC sensitivity of the isolated or commercial products. For the substrate scope study, the products were isolated by column chromatography with silica gel 60 (spherical, 60-100mum, Kanto Chemical Co., Ltd.) using hexane/ethyl acetate or ethyl acetate/methanol as the eluting solvent. The yields of the isolated amine derivatives were determined and identified by 1H and 13C NMR and GC-MS methods. |