Structure of 1121057-75-7
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1121057-75-7 |
Formula : | C11H21BClNO2 |
M.W : | 245.55 |
SMILES Code : | CC1(C)C(C)(C)OB(C2=CCNCC2)O1.[H]Cl |
MDL No. : | MFCD11506076 |
InChI Key : | WNMYCAJTXUCHBQ-UHFFFAOYSA-N |
Pubchem ID : | 49761084 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 16 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.82 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 73.03 |
TPSA ? Topological Polar Surface Area: Calculated from |
30.49 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.83 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.96 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.07 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.01 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.17 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.45 |
Solubility | 0.873 mg/ml ; 0.00355 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.09 |
Solubility | 1.99 mg/ml ; 0.00812 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.68 |
Solubility | 0.518 mg/ml ; 0.00211 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.5 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.57 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With hydrogenchloride In tert-butyl methyl ether at 20℃; | Method 3: General conditions for the deprotection of a 7V-Boc carbamate in the presence of a boronate ester: The boronate ester is dissolved in te/t-butylmethylether (0.4 M final ester concentration) after which point HCl (g) is bubbled in over the course of 15 min. The reaction is allowed to stir at room temperature for an additional hour after which point the solvent is removed under a stream of nitrogen to provide the desired HCl amine salt as a white solid in quantitative yield.; Example 2: Tetrahydropyridine 2 was prepared in 3 steps starting with the deprotection of 1 using Method 3. The resulting HCl amine salt was dissolved in dichloromethane (0.2 M). Benzyl chloroformate (1.2 equiv) was added followed by triethylamine (3.0 equiv). The reaction was allowed to stir at room temperature for 2h after which point it was diluted with IN HCl and extracted with excess dichloromethane. The organic layer was dried over MgSψ4 and concentrated to provide the desired carbamate in quantitative yield, which was converted directly to boronic acid 2 using Method 2. [M-H]- = 260.1 m/z. Activity: B |
100% | With hydrogenchloride In 1,4-dioxane at 20℃; for 4 h; | To a solution of tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)-5,6-dihydropyridine-1(2H)-carboxylate (5g, 16 mmol) in dioxane (10 mL) was added 4N HCl dioxane solution (24.2 mL, 97 mmol) at RT, and the reaction was stirred at RT for 4 h. The mixture was concentrated under reduced pressure to afford the title compound (4 g, yield 100percent) as a white solid.MS (ES+) C11H21BCINO2 requires: 209, found 210 [M+H]+. |
100% | With hydrogenchloride In ethyl acetate at 0 - 26℃; for 3 h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (ARK PHARMA, 25 g, 80.851 mmol) was dissolved in 250 mL of EtOAc and HCI 4N in EtOAc (SYMAX FINE CHEMICALS, 250 mL) was added at 0 °C. The mixture was allowed to 26 °C and stirred for 3 h. The reaction mixture was evaporated under reduced pressure. The crude was washed with diethyl ether and filtered to give title compound (20 g, quantitative). NMR (400 MHz, DMSO-d6) δ ppm: 9.30 (br s, 2H), 6.40-6.30 (m, 1 H), 3.64- 3.52 (m, 2H), 3.15-3.00 (m, 2H), 2.34-2.22 (m, 2H), 1.21 (s, 12H). |
96% | With hydrogenchloride In 1,4-dioxane; dichloromethane at 20℃; | To tert-butyl 4-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyridine- 1 -carboxylate 51 (3 g, 9.7 mmol) in dichloromethane (5 mL) was added hydrochloric acid in 1,4-dioxane (4 N, 5 mL). The reaction was stirred at room temperature overnight, then concentrated twice from toluene. The residue was washed with ethyl acetate and dried under vacuum to produce compound 52 as an HC1 salt (2.3 g, 96percent). The data from the lH NMR spectrum were consistent with the structure of the compound. |
90% | With hydrogenchloride In diethyl ether; tert-butyl methyl ether at 20℃; | tert-butyl 4-(4,4,5 ,5-tetramethyl- 1,3 ,2-dioxaborolan-2-yl)-5 ,6-dihydropyridine- 1(2H)-carboxylate (2 g, 6.47 mmol) was suspended in MTBE (8.1 mL) and 2M HC1 in Et20 (24 mL). The reaction was stirred rt overnight, the white precipitate formed collected by filtration and washed with Et20 to give the title compound (1.434 g, 90 percent).UPLC-MS: 0.51 mm, 210.3 [M+H]+, method 9. |
90% | With hydrogenchloride In diethyl ether; tert-butyl methyl ether at 20℃; | tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2 g, 6.47 mmol) was suspended in MTBE (8.1 mL) and 2M HCl in Et2O (24 mL). The reaction was stirred rt overnight, the white precipitate formed collected by filtration and washed with Et2O to give the title compound (1.434 g, 90percent).UPLC-MS: 0.51 min, 210.3 [M+H]+, method 9. |
8 g | With hydrogenchloride In dichloromethane; isopropyl alcohol for 12 h; | Step 1: 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridinium chloride Tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (10 g) is dissolved in dichloromethane (100 mL) and 5 M HCl in isopropanol (120 mL) and stirred for 12 hours. The solvents are evaporated, the residue is redissolved in toluene and the solvent is again evaporated to give the title compound. Yield: 8 g; LC (method 11): tR=0.68 min; Mass spectrum (ESI+): m/z=210 [M+H]+. |
8 g | With hydrogenchloride In dichloromethane; isopropyl alcohol for 12 h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (1 0 g) is d issolved in d ichloromethane (1 00 m L) and 5 M HCI in isopropanol (120 mL) and stirred for 12 hours. The solvents are evaporated, the residue is redissolved in toluene and the sollvent is again evaporated to give the title compound. Yield: 8 g; LC (method 1 1 ): tR = 0.68 min; Mass spectrum (EST): m/z = 210 [M+H]+. |
8 g | With hydrogenchloride In dichloromethane; isopropyl alcohol for 12 h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (10 g) is dissolved in dichloromethane (100 mL) and 5 M HCI in isopropanol (120 mL) and stirred for 1 2 hours. The solvents are evaporated, the residue is redissolved in toluene and the sollvent is again evaporated to give the title compound. Yield: 8 g; LC (method 1 1 ): tR = 0.68 min; Mass spectrum (EST): m/z = 210 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In dichloromethane; at 20℃; for 2h; | Example 7: Tetrahydropyridine 7 was prepared in 3 steps starting with the deprotection of 1 using Method 3. The resulting HCl amine salt was suspended in dichloro methane (0.2 M). Triphosgene (0.67 equiv) was added followed by benzylamine (2.67 equiv) and triethylamine (5.0 equiv) after which point the reaction became homogeneous. The reaction was allowed to stir at room temperature for 2h after which point it was diluted with IN HCl and extracted with excess dichloromethane. The organic layer was dried over MgSpsi4, and concentrated to provide the desired urea which was converted directly to boronic acid 7 using Method 2 and isolated using semi-preparatory reverse phase liquid chromatography. [M-H]- = 259.1 m/z. Activity: B |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With triethylamine; In dichloromethane; at 20℃; for 2h; | Example 2: Tetrahydropyridine 2 was prepared in 3 steps starting with the deprotection of 1 using Method 3. The resulting HCl amine salt was dissolved in dichloromethane (0.2 M). Benzyl chloroformate (1.2 equiv) was added followed by triethylamine (3.0 equiv). The reaction was allowed to stir at room temperature for 2h after which point it was diluted with IN HCl and extracted with excess dichloromethane. The organic layer was dried over MgSpsi4 and concentrated to provide the desired carbamate in quantitative yield, which was converted directly to boronic acid 2 using Method 2. [M-H]- = 260.1 m/z. Activity: B |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With hydrogenchloride; In tert-butyl methyl ether; at 20℃; | Method 3: General conditions for the deprotection of a 7V-Boc carbamate in the presence of a boronate ester: The boronate ester is dissolved in te/t-butylmethylether (0.4 M final ester concentration) after which point HCl (g) is bubbled in over the course of 15 min. The reaction is allowed to stir at room temperature for an additional hour after which point the solvent is removed under a stream of nitrogen to provide the desired HCl amine salt as a white solid in quantitative yield.; Example 2: Tetrahydropyridine 2 was prepared in 3 steps starting with the deprotection of 1 using Method 3. The resulting HCl amine salt was dissolved in dichloromethane (0.2 M). Benzyl chloroformate (1.2 equiv) was added followed by triethylamine (3.0 equiv). The reaction was allowed to stir at room temperature for 2h after which point it was diluted with IN HCl and extracted with excess dichloromethane. The organic layer was dried over MgSpsi4 and concentrated to provide the desired carbamate in quantitative yield, which was converted directly to boronic acid 2 using Method 2. [M-H]- = 260.1 m/z. Activity: B |
100% | With hydrogenchloride; In 1,4-dioxane; at 20℃; for 4h; | To a solution of tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)-5,6-dihydropyridine-1(2H)-carboxylate (5g, 16 mmol) in dioxane (10 mL) was added 4N HCl dioxane solution (24.2 mL, 97 mmol) at RT, and the reaction was stirred at RT for 4 h. The mixture was concentrated under reduced pressure to afford the title compound (4 g, yield 100percent) as a white solid.MS (ES+) C11H21BCINO2 requires: 209, found 210 [M+H]+. |
100% | With hydrogenchloride; In ethyl acetate; at 0 - 26℃; for 3h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (ARK PHARMA, 25 g, 80.851 mmol) was dissolved in 250 mL of EtOAc and HCI 4N in EtOAc (SYMAX FINE CHEMICALS, 250 mL) was added at 0 °C. The mixture was allowed to 26 °C and stirred for 3 h. The reaction mixture was evaporated under reduced pressure. The crude was washed with diethyl ether and filtered to give title compound (20 g, quantitative). NMR (400 MHz, DMSO-d6) delta ppm: 9.30 (br s, 2H), 6.40-6.30 (m, 1 H), 3.64- 3.52 (m, 2H), 3.15-3.00 (m, 2H), 2.34-2.22 (m, 2H), 1.21 (s, 12H). |
96% | With hydrogenchloride; In 1,4-dioxane; dichloromethane; at 20℃; | To tert-butyl 4-(4,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyridine- 1 -carboxylate 51 (3 g, 9.7 mmol) in dichloromethane (5 mL) was added hydrochloric acid in 1,4-dioxane (4 N, 5 mL). The reaction was stirred at room temperature overnight, then concentrated twice from toluene. The residue was washed with ethyl acetate and dried under vacuum to produce compound 52 as an HC1 salt (2.3 g, 96percent). The data from the lH NMR spectrum were consistent with the structure of the compound. |
90% | With hydrogenchloride; In diethyl ether; tert-butyl methyl ether; at 20℃; | tert-butyl 4-(4,4,5 ,5-tetramethyl- 1,3 ,2-dioxaborolan-2-yl)-5 ,6-dihydropyridine- 1(2H)-carboxylate (2 g, 6.47 mmol) was suspended in MTBE (8.1 mL) and 2M HC1 in Et20 (24 mL). The reaction was stirred rt overnight, the white precipitate formed collected by filtration and washed with Et20 to give the title compound (1.434 g, 90 percent).UPLC-MS: 0.51 mm, 210.3 [M+H]+, method 9. |
90% | With hydrogenchloride; In diethyl ether; tert-butyl methyl ether; at 20℃; | tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (2 g, 6.47 mmol) was suspended in MTBE (8.1 mL) and 2M HCl in Et2O (24 mL). The reaction was stirred rt overnight, the white precipitate formed collected by filtration and washed with Et2O to give the title compound (1.434 g, 90percent).UPLC-MS: 0.51 min, 210.3 [M+H]+, method 9. |
With hydrogenchloride; In methanol; at 20℃; for 1h; | The mixture of tert-butyl 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-5,6- dihydropyridine-l(2H)-carboxylate (4.0 g, 12.9 mmol) in HCl/MeOH (20 mL) was stirred at room temperature for lhour. Then it was concentrated to give 4-(4,4,5,5-Tetramethyl- [l,3,2]dioxaborolan-2-yl)-l,2,3,6-tetrahydro-pyridine hydyochloride (2.9 g, 11.8mmol, yield:91.4percent)which was used in the next step without further purification. ESI-MS (M+1): 210 calc. for CnH2oBN02 209 | |
8 g | With hydrogenchloride; In dichloromethane; isopropyl alcohol; for 12h; | Step 1: 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridinium chloride Tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (10 g) is dissolved in dichloromethane (100 mL) and 5 M HCl in isopropanol (120 mL) and stirred for 12 hours. The solvents are evaporated, the residue is redissolved in toluene and the solvent is again evaporated to give the title compound. Yield: 8 g; LC (method 11): tR=0.68 min; Mass spectrum (ESI+): m/z=210 [M+H]+. |
8 g | With hydrogenchloride; In dichloromethane; isopropyl alcohol; for 12h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (1 0 g) is d issolved in d ichloromethane (1 00 m L) and 5 M HCI in isopropanol (120 mL) and stirred for 12 hours. The solvents are evaporated, the residue is redissolved in toluene and the sollvent is again evaporated to give the title compound. Yield: 8 g; LC (method 1 1 ): tR = 0.68 min; Mass spectrum (EST): m/z = 210 [M+H]+. |
8 g | With hydrogenchloride; In dichloromethane; isopropyl alcohol; for 12h; | Tert-butyl 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1 (2H)- carboxylate (10 g) is dissolved in dichloromethane (100 mL) and 5 M HCI in isopropanol (120 mL) and stirred for 1 2 hours. The solvents are evaporated, the residue is redissolved in toluene and the sollvent is again evaporated to give the title compound. Yield: 8 g; LC (method 1 1 ): tR = 0.68 min; Mass spectrum (EST): m/z = 210 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate; triethylamine; In N,N-dimethyl-formamide; at 20℃; | Example 5: Tetrahydropyridine 5 was prepared in 2 steps starting with the deprotection of 1 usingMethod 3. The resulting HCl amine salt was dissolved in 7V,7V-dimethylformamide (0.2 M). 3- Methyl-l-benzothiophene-2-carboxylic acid (1.0 equiv) and PyBOP (1.0 equiv) were added followed by the dropwise addition of triethylamine (3.0 equiv). After stirring at room temperature for 30 min, the reaction was diluted with water and filtered. The isolated material was then purified using semi -preparatory liquid chromatography to isolate the fraction of desired boronic acid 5 that resulted from pinacol ester deprotection during the course of the acid coupling. [M-H]- = 300.1 m/z. Activity: B |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
75% | With triethylamine; In dichloromethane; at 20℃; | To a mixture of the product from the previous step (4.0 g, 16 mmol) and TEA (6.3 mL, 48 mmol) in CH2Cl2 (60 mL) at RT was added methanesulfonyl chloride (1.5 mL, 20 mmol) dropwise and the reaction was stirred at RT overnight. The reaction mixture was diluted with CH2Cl2 (60 mL), washed with IN HCl to pH = 5, then with brine (50 mL), and then dried over Na2S04, filtered and concentrated under reduced pressure. The residue was washed with petroleum ether (100 mL) to afford the title compound (3.5 g, 75percent yield) as a white solid.MS (ES+) C12H22BNO4S, requires: 287, found 288 [M+H]+. |
7.4 g | With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 20℃; for 12h; | Step 2: 1-(Methylsulfonyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine To a cooled (0° C.) solution of <strong>[1121057-75-7]4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridinium chloride</strong> (8 g) and N-ethyldiisopropylamine (12 mL) in dichloromethane (100 mL) is added dropwise methanesulfonyl chloride (3 mL). The mixture is stirred for 12 hours at room temperature. The mixture is partitioned between dichloromethane and 0.1 M hydrochloric acid. The organic phase is separated, washed with brine and dried (MgSO4). The solvent is evaporated and the residue is crystallized from diethylether to give the title compound. Yield: 7.4 g; LC (method 15): tR=0.98 min; Mass spectrum (ESI+): m/z=288 [M+H]+. |
7.4 g | With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 0 - 20℃; for 12h; | To a cooled (0°C) solution of 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-1 ,2,3,6- tetrahydropyridinium chloride (8 g) and N-ethyldiisopropylamine (12 mL) in dichloromethane (100 mL) is added dropwise methanesulfonyl chloride (3 mL). The mixture is stirred for 1 2 hours at room temperature. The mixture is partitioned between dichloromethane and 0.1 M hydrochloric acid. The organic phase is separated, washed with brine and dried (MgSO4). The solvent is evaporated and the residue is crystallized from diethylether to give the title compound. Yield: 7.4 g; LC (method 15): tR = 0.98 min; Mass spectrum (ESI+): m/z = 288 [M+H]+. |
With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 0 - 20℃; for 12h; | To a cooled (0°C) solution of 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-1 ,2,3,6- tetrahydropyridinium chloride (8 g) and N-ethyldiisopropylamine (12 mL) in dichloromethane (100 mL) is added dropwise methanesulfonyl chloride (3 mL). The mixture is stirred for 12 hours at room temperature. The mixture is partitioned between dichloromethane and 0.1 M hydrochloric acid. The organ ic phase is separated, washed with brine and dried (MgSO4). The solvent is evaporated and the residue is crystallized from diethylether to give the title compound. Yield: 7.4 g; LC (method 15): tR = 0.98 min; Mass spectrum (ESI+): m/z = 288 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethyl-N,N-diisopropylamine; In acetonitrile; at 20℃; for 3h; | To 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)- 1,2,3,6- tetrahydropyridine hydrochloride 52 (0.7 g, 2.85 mmol) in acetonitrile (15 mL) was added cyclopropanecarbonyl chloride 53 (0.3 g, 2.87 mmol), followed by N,N-diisopropylethylamine (0.8 mL). The reaction mixture was stirred at room temperature for 3 hours, then passed through a silica gel column (eluting with ethyl acetate and hexanes) to provide crude product in light-colored fractions. The fractions were combined and concentrated. The residue was triturated with a mixture of ethyl acetate and hexanes. The mother liquid was collected and concentrated to provide compound 54 as an orange gel. The compound 54 was used for the subsequent reactions without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
55% | With dichloro(1,1-bis(diphenylphosphino)ferrocene)palladium(II) acetone adduct; potassium carbonate; In 1,4-dioxane; water; at 130℃; for 0.333333h;Microwave irradiation; | To N-(2-iodo-lH-pyrrolo[2,3-Z?]pyridin-5-yl)-3,4- dimethyl-lH-pyrazole-5-carboxamide 59 (0.15 g, 0.39 mmol) in 1,4-dioxane (3 ml) was added 4- (4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-l,2,3,6-tetrahydropyridine hydrochloride 52 (0.19 g, 0.79 mmol), dichloro(l, l-bis(diphenylphosphino)ferrocene)palladium(ii) acetone adduct (0.02 g, 0.03 mmol) and aqueous potassium carbonate (1.2 mL, 1 M). The reaction mixture was heated in a microwave reactor at 130 °C for 20 minutes. The reaction mixture was poured into iced water and the precipitate was collected by filtration, and then triturated with ethyl acetate to provide compound 60 (73 mg, 55percent). The compound was used for subsequent reaction without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
1.84 g | With N-ethyl-N,N-diisopropylamine; HATU; In N,N-dimethyl-formamide; at 0 - 35℃; for 72h; | G) tert-Butyl 4-oxo-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridin-1(2H)-yl)butanoate HATU (3.68 g) was added to a mixture of <strong>[1121057-75-7]4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine hydrochloride</strong> (1.98 g), 4-tert-butoxy-4-oxobutanoic acid (1.686 g), N,N-diisopropylethylamine (3.38 mL), and DMF (20 mL) at 0 C, and the obtained mixture was stirred at room temperature for 3 days. To the reaction mixture, water was added, followed by extraction with ethyl acetate. The extract was washed with brine and dried over anhydrous magnesium sulfate, and then, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (NH, ethyl acetate/hexane) to obtain the title compound (1.84 g). MS: [M+H]+ 366.3. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
1.11 g | With potassium carbonate; In acetonitrile; at 70℃; | A) tert-Butyl 3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridin-1(2H)-yl)propanoate A mixture of <strong>[1121057-75-7]4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine hydrochloride</strong> (100 mg), tert-butyl acrylate (0.089 mL), potassium carbonate (169 mg), and acetonitrile (2 mL) was stirred overnight at 70 C. In another reaction vessel, a mixture of <strong>[1121057-75-7]4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine hydrochloride</strong> (1.00 g), tert-butyl acrylate (0.895 mL), potassium carbonate (1.688 g), and acetonitrile (10 mL) was stirred overnight at 70 C. These two reaction mixtures were combined, and water was added thereto, followed by extraction with ethyl acetate. The extract was washed with brine and dried over anhydrous magnesium sulfate, and then, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (NH, ethyl acetate/hexane) to obtain the title compound (1.11 g). MS: [M+H]+ 338.2. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
17.8% | With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In dichloromethane; at 25℃; for 4h; | To a solution of 3-hydroxy-3-methylbutanoic acid (7.94 g, 67.2 mmol), l-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride (14.05 g, 73.3 mmol) and N,N-dimethylpyridin-4- amine (26.1 g, 214 mmol) in DCM (700 mL) was added 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)- 1,2,3,6-tetrahydropyridine, HQ (15 g, 61.1 mmol). The reaction was stirred at 25 °C for 4 h. The reaction was diluted with DCM (500 mL), washed with IN HC1 (400 mL) and brine (400 mL), dried over Na2SC>4, filtered, and concentrated under reduced pressure to give crude product, which was purified by column chromatography on silica gel (0-100percent EtOAc/hexane) to give the title compound (4 g, 17.8 percent); 1H NMR (400 MHz, CDCl3-d): delta 1.16 - 1.35 (m, 18 H), 2.20 - 2.30 (m, 2 H), 2.42 (d, J=15.44 Hz, 2 H), 3.46 (t, J=5.73 Hz, 1 H), 3.63 (t, J=5.51 Hz, 1 H), 3.97 (q, J=2.65 Hz, 1 H), 4.12 (q, J=2.65 Hz, 1 H), 5.27 (d, J=12.35 Hz, 1 H), 6.35 - 6.54 (m, 1 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.3 g | 1,2,3,6-tetrahydro pyridin-4-yl-boron acid Triethylamine (2.84 mL) is added to the N.N-dimethylformamide (20 mL) solution of pinacol ester salt acid chloride (CAS number: 1121057-75-7) (2.50 g), It stirred for 5 minutes at the room temperature. 4-(4,6-dimethoxy- 1,3,5-triazine 2-yl)-4-methylmorpholinium Chloride (4.20 g) and 1,4-dioxane 2-carboxylic acid (1.61 g) was added, and it stirred at the room temperature for 18 hours. Water was added to reaction mixture, the organic layer was washed twice with water after extraction with ethyl acetate, and the saturated sodium chloride solution washed further. After drying with anhydrous sodium sulfate, the mark compound (2.30 g) was obtained as a brown oily matter by condensing under decompression. |
Tags: 1121057-75-7 synthesis path| 1121057-75-7 SDS| 1121057-75-7 COA| 1121057-75-7 purity| 1121057-75-7 application| 1121057-75-7 NMR| 1121057-75-7 COA| 1121057-75-7 structure
A133137 [1462950-92-0]
1-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine hydrochloride
Similarity: 0.98
A292351 [454482-11-2]
1-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine
Similarity: 0.97
A183372 [1048976-83-5]
1-Benzyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine
Similarity: 0.90
A131034 [1227068-67-8]
1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1(2H)-yl)ethanone
Similarity: 0.86
A158780 [129636-11-9]
N,N-Dimethyl-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanamine
Similarity: 0.80
A133137 [1462950-92-0]
1-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine hydrochloride
Similarity: 0.98
A292351 [454482-11-2]
1-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine
Similarity: 0.97
A183372 [1048976-83-5]
1-Benzyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine
Similarity: 0.90
A131034 [1227068-67-8]
1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1(2H)-yl)ethanone
Similarity: 0.86
A843583 [1616388-38-5]
Cyclopropyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridin-1(2H)-yl)methanone
Similarity: 0.80
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL