Structure of H-tert-Leu-OH·HCl
CAS No.: 139163-43-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 139163-43-2 |
Formula : | C6H14ClNO2 |
M.W : | 167.63 |
SMILES Code : | CC(C)(C)[C@H](N)C(O)=O.[H]Cl |
MDL No. : | MFCD07368368 |
InChI Key : | OLMBOHVAVKHHTK-PGMHMLKASA-N |
Pubchem ID : | 12314685 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P280-P301+P312-P302+P352-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
85% | With hydrogenchloride; water; for 24.0h;Heating / reflux; | Synthesis of (S)-2-amino-3,3-d9-dimethylbutanoic acid hydrochloride (XXV, R2/3 = C(CD3)3).; A mixture of compound XXIIc (R2 = R3 = C(CD3)3) (31.0 g, 222.6 mmol) in 6M aqueous HCI solution (1.5 L) was heated at reflux for 24 hrs. The mixture was concentrated in vacuo to give the crude product. The solid was redissolved in water (500 mL) and washed with EtOAc (2x200mL) to remove impurities from previous steps. The aqueous layer was then concentrated in vacuo, chased with toluene, and dried under vacuum at 50C to afford the HCl salt of the desired compound (S)-2-amino-3,3-dimethylbutanoic acid-d9 hydrochloride (XXV, R2 = R3 = C(CD3)3) (33.6 g, 85% yield) as a white solid, |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Synthesis of (S)-2-(d3-methoxycarbonylamino)-3,3-d9-dimethylbutanoic acid (XVII-d12).; To a solution of compound XXV (R2 = R3 = C(CD3)3) (4.42 g, 25.0 mmol) in a mixture of dioxane (12.5 mL) and 2M NaOH solution (60 mL) was added methyl chloroformate-d3 (5.0 g, 50.0 mmol, Cambridge Isotopes, 99 atom% D) dropwise, keeping the internal temperature below 50C. The resulting mixture was warmed to 60 C and stirred overnight, and then cooled to It The mixture was washed with dichloromethane and the aqueous layer was acidified with cone. HCl to pH = 2 and extracted with EtOAc. The combined extracts were dried, filtered, and concentrated in vacuo to afford the desired compound (S)-2-(methoxycarbonylamino)-3,3-dimethylbutanoic acid-d12 (XVII-d12) (3.8 g) as a yellow oil. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In water; for 12.0h; | Example 2 A mixture of L-tert-leucine.dibenzoyl-d-tartrate salt (27 g) as obtained in example-1, water (150 mL) and concentrated hydrochloric acid (50 mL) was stirred for 12 hours. The liberated dibenzoyl-d-tartaric acid was filtered and dried (20 g). The filtrate was concentrated under reduced pressure to remove all the solvent. The residue obtained was stirred with acetone (15 ml*2), filtered and dried to obtain colorless solid of L-tert-leucine hydrochloride salt. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With epichlorohydrin; In toluene; | It was suspended in toluene (50 mL) and epichlorohydrin (5.8 g) was added. The reaction mixture was stirred till the pH was neutral. It was filtered, the solid obtained was stirred with acetone (15 ml*2) and again filtered to obtain L-tert-leucine (5.6 g, 75% yield, 98.5% chemical purity, 99.9% chiral purity). | |
With epichlorohydrin; In toluene; | A mixture of L-tert-leucine.dibenzoyl-d-tartrate salt (27 g) as obtained in Example-1, water (150 mL) and concentrated hydrochloric acid (50 mL) was stirred for 12 hours. The liberated dibenzoyl-d-tartaric acid was filtered and dried (20 g). The filtrate was concentrated under reduced pressure to remove all the solvent. The residue obtained was stirred with acetone (15 ml x 2), filtered and dried to obtain colorless solid <strong>[139163-43-2]L-tert-leucine hydrochloride</strong> salt. It was suspended in toluene (50 mL) and epichlorohydrin (5.8 g) was added. The reaction mixture was stirred until the pH was neutral. It was filtered, the solid obtained was stirred with acetone (15 ml x 2) and again filtered to obtain L-tert-leucine (5.6 g, 75 % yield, 98.5 % chemical purity, 99.9% chiral purity). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In water; for 12.0h; | A mixture of L-tert-leucine.dibenzoyl-d-tartrate salt (27 g) as obtained in Example-1, water (150 mL) and concentrated hydrochloric acid (50 mL) was stirred for 12 hours. The liberated dibenzoyl-d-tartaric acid was filtered and dried (20 g). The filtrate was concentrated under reduced pressure to remove all the solvent. The residue obtained was stirred with acetone (15 ml x 2), filtered and dried to obtain colorless solid L-tert-leucine hydrochloride salt. It was suspended in toluene (50 mL) and epichlorohydrin (5.8 g) was added. The reaction mixture was stirred until the pH was neutral. It was filtered, the solid obtained was stirred with acetone (15 ml x 2) and again filtered to obtain L-tert-leucine (5.6 g, 75 % yield, 98.5 % chemical purity, 99.9% chiral purity). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With thionyl chloride; at -10 - 20℃; for 16.0h; | General procedure: For the synthesis of compounds 2a, 2c-2g, we used slightly modificated known procedure [1]. To a stirred solution of amino acid (32.2mmol) in dry methanol (100mL) was added drop-wise thionyl chloride (64.4mmol). The temperature was kept between-10 and-5C. After complete addition, the reaction was stirred at RT overnight. After 16h, the solution was evaporated to dryness. The product was diluted with EtOAc and collected by filtration. The residue was dried under reduced pressure to give an amino acid methyl ester hydrochloride as white crystalline powder. The yields were higher in all experiments than 80%. Melting point and 1H as well as 13C NMR spectra in D2O were used for characterization of the prepared compounds. The data are in good agreement with literature data [20]. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With (benzotriazo-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; N-ethyl-N,N-diisopropylamine; In N,N-dimethyl-formamide; at 20℃; for 16.0h; | [0914] To a solution of AI-1 (500 mg, 3.33 mmol, 1 eq) in DMF (5 mL) were added AI-2 (546.01 mg, 3.26 mmol, 9.78e-1 eq, HCl), DIEA (1.29 g, 9.99 mmol, 1.74 mL, 3 eq) and BOP (1.77 g, 4.00 mmol, 1.2 eq). The mixture was stirred at 20C. for 16 h to give a yellow solution. LCMS and TLC (eluting with: PE/EtOAc=1/1) showed the reaction was completed. The reaction mixture was quenched with H2O (20 mL) and extracted with MTBE (30 mL3). The organic layers were dried over Na2SO4 and concentrated to give the crude product. The product was purified by a flash column (eluting with:PE/EtOAc=5% to 50%) to give AI-3 . |