Home Cart 0 Sign in  
X

[ CAS No. 1528607-78-4 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 1528607-78-4
Chemical Structure| 1528607-78-4
Chemical Structure| 1528607-78-4
Structure of 1528607-78-4 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 1528607-78-4 ]

Related Doc. of [ 1528607-78-4 ]

Alternatived Products of [ 1528607-78-4 ]
Product Citations

Product Details of [ 1528607-78-4 ]

CAS No. :1528607-78-4 MDL No. :MFCD22381231
Formula : C8H5BrF2O Boiling Point : -
Linear Structure Formula :- InChI Key :VAOKHDWJQCHTID-UHFFFAOYSA-N
M.W : 235.03 Pubchem ID :83410729
Synonyms :

Calculated chemistry of [ 1528607-78-4 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 12
Num. arom. heavy atoms : 6
Fraction Csp3 : 0.12
Num. rotatable bonds : 1
Num. H-bond acceptors : 3.0
Num. H-bond donors : 0.0
Molar Refractivity : 44.25
TPSA : 17.07 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : Yes
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -5.96 cm/s

Lipophilicity

Log Po/w (iLOGP) : 2.01
Log Po/w (XLOGP3) : 2.5
Log Po/w (WLOGP) : 3.77
Log Po/w (MLOGP) : 3.35
Log Po/w (SILICOS-IT) : 3.67
Consensus Log Po/w : 3.06

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -3.18
Solubility : 0.157 mg/ml ; 0.000667 mol/l
Class : Soluble
Log S (Ali) : -2.5
Solubility : 0.737 mg/ml ; 0.00313 mol/l
Class : Soluble
Log S (SILICOS-IT) : -4.15
Solubility : 0.0166 mg/ml ; 0.0000706 mol/l
Class : Moderately soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 1.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.44

Safety of [ 1528607-78-4 ]

Signal Word:Warning Class:
Precautionary Statements:P261-P264-P270-P271-P280-P302+P352-P304+P340-P305+P351+P338-P312-P330-P362-P403+P233-P501 UN#:
Hazard Statements:H302-H312-H332 Packing Group:
GHS Pictogram:

Application In Synthesis of [ 1528607-78-4 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1528607-78-4 ]

[ 1528607-78-4 ] Synthesis Path-Downstream   1~12

  • 1
  • [ 1528607-78-4 ]
  • [ 1807848-86-7 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 2 steps 1.1: sodium acetate / ethanol; water / 3 h / 70 °C 2.1: borane-THF / tetrahydrofuran / 212.17 h / 70 °C 2.2: 1 h / 40 °C
  • 2
  • [ 1528607-78-4 ]
  • [ 593-56-6 ]
  • [ 1807848-85-6 ]
YieldReaction ConditionsOperation in experiment
27.7 g With sodium acetate In ethanol; water at 70℃; for 3h; Intermediate 62: To a mixture of 26 g (110 mmoles) of intermediate 61 in 53 mL of ethanol there are added 107 mL of water, 11.8 g (141 mmoles) of methoxylamine hydrochloride and 11.8 g (142 mmoles) of sodium acetate. The mixture is heated for 3 hours at 70° C. The mixture is returned to ambient temperature and then extracted with AcOEt (0.5 L) in the presence of a saturated aqueous NaCl solution. The organic phase is dried over MgSO4. Evaporation under reduced pressure yields 27.7 g of the mixture of oximes 62 in the form of a light-brown solid, which is used without additional treatment in the following step. IR (cm-1): 1025
  • 3
  • [ 1528607-78-4 ]
  • [ CAS Unavailable ]
  • [ 1807849-39-3 ]
YieldReaction ConditionsOperation in experiment
1.5 g Stage #1: C8H5BrF2O; methylamine hydrochloride With titanium(IV) isopropylate; triethylamine In ethanol at 20℃; for 40h; Stage #2: With sodium tetrahydroborate In ethanol for 20h; Intermediate 211: To a mixture of TiOiPr4 (16 mL, 54 mmoles) in ethanol (70 mL) there are added NEt3 (7.7 mL, 55.3 mmoles), methylamine hydrochloride (3.7 g, 54.8 mmoles) and intermediate 61 (7 g, 27.8 mmoles). The mixture is stirred at ambient temperature for 40 hours, and then NaBH4 (1.56 g, 41.4 mmoles) is added in portions. After 20 hours' stirring, the reaction mixture is poured carefully into a 2N aqueous NH4OH solution, and the resulting precipitate is filtered off and rinsed with methylene chloride. The filtrate is decanted, the organic phase is washed with a 2N aqueous HCl solution, and the acidic phase is brought to basic pH by means of a 20% sodium hydroxide solution. The product is extracted with methylene chloride, the organic phase is dried over MgSO4, and evaporation under reduced pressure yields an oil, which is purified on silica gel using a methylene chloride/ethanol elution gradient 100/0 to 95/5. Intermediate 210 is isolated in the form of an oil (1.5 g). 1H NMR (400 MHz; DMSO-d6): δ 7.25 (d, 2H), 3.6 (q, 1H), 2.5-2.15 (m, 1H), 2.10 (s, 3H), 1.20 (d, 3H) IR (cm-1): 3280-3360
  • 4
  • [ 6165-69-1 ]
  • [ 1528607-78-4 ]
  • [ 2817709-57-0 ]
YieldReaction ConditionsOperation in experiment
69% With palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride; potassium carbonate In N,N-dimethyl-formamide at 100℃; for 4h; Inert atmosphere;
  • 5
  • [ 1528607-78-4 ]
  • [ 2817709-58-1 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 2 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: tetrahydrofuran / 2 h / 0 - 20 °C / Inert atmosphere
  • 6
  • [ 1528607-78-4 ]
  • [ 2817709-59-2 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 3 steps 1.1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2.1: tetrahydrofuran / 2 h / 0 - 20 °C / Inert atmosphere 3.1: lithium dipropan-2-ylazanide / tetrahydrofuran / 1 h / 0 - 20 °C / Inert atmosphere 3.2: 12 h / 20 °C / Inert atmosphere
  • 7
  • [ 1528607-78-4 ]
  • [ 2817709-85-4 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 2 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C
  • 8
  • [ 1528607-78-4 ]
  • [ 2817709-86-5 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 3 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C 3: lithium dipropan-2-ylazanide / tetrahydrofuran / 2 h / 0 - 10 °C / Inert atmosphere
  • 9
  • [ 1528607-78-4 ]
  • [ 2817709-87-6 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 4 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C 3: lithium dipropan-2-ylazanide / tetrahydrofuran / 2 h / 0 - 10 °C / Inert atmosphere 4: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / 1,4-dioxane; lithium hydroxide monohydrate / 4 h / 100 °C / Inert atmosphere
  • 10
  • [ 1528607-78-4 ]
  • [ 2817709-88-7 ]
  • [ 2817709-89-8 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 5 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C 3: lithium dipropan-2-ylazanide / tetrahydrofuran / 2 h / 0 - 10 °C / Inert atmosphere 4: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / 1,4-dioxane; lithium hydroxide monohydrate / 4 h / 100 °C / Inert atmosphere 5: Lux Cellulose-4 / Supercritical conditions; Resolution of racemate
  • 11
  • [ 1528607-78-4 ]
  • [ 2817709-90-1 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 6 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C 3: lithium dipropan-2-ylazanide / tetrahydrofuran / 2 h / 0 - 10 °C / Inert atmosphere 4: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / 1,4-dioxane; lithium hydroxide monohydrate / 4 h / 100 °C / Inert atmosphere 5: Lux Cellulose-4 / Supercritical conditions; Resolution of racemate 6: sodium hydroxide; lithium hydroxide monohydrate / tetrahydrofuran / 6 h / 40 °C
  • 12
  • [ 1528607-78-4 ]
  • [ 2817708-82-8 ]
YieldReaction ConditionsOperation in experiment
Multi-step reaction with 7 steps 1: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / N,N-dimethyl-formamide / 4 h / 100 °C / Inert atmosphere 2: sodium tetrahydridoborate / tetrahydrofuran / 16 h / 0 - 20 °C 3: lithium dipropan-2-ylazanide / tetrahydrofuran / 2 h / 0 - 10 °C / Inert atmosphere 4: potassium carbonate; palladium (II) [1,1'-bis(diphenylphosphanyl)ferrocene] dichloride / 1,4-dioxane; lithium hydroxide monohydrate / 4 h / 100 °C / Inert atmosphere 5: Lux Cellulose-4 / Supercritical conditions; Resolution of racemate 6: sodium hydroxide; lithium hydroxide monohydrate / tetrahydrofuran / 6 h / 40 °C 7: N,N-dimethyl-4-aminopyridine; N-[3-(N,N-dimethylamino)-propyl]-N'-ethyl-carbodiimide hydrochloride / dichloromethane / 16 h / 20 - 25 °C / Inert atmosphere
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Acid-Catalyzed α -Halogenation of Ketones • Acidity of Phenols • Acids Combine with Acyl Halides to Produce Anhydrides • Acyl Chloride Hydrolysis • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Addition of a Hydrogen Halide to an Internal Alkyne • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols from Haloalkanes by Acetate Substitution-Hydrolysis • Alcohols React with PX3 • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkyl Halide Occurrence • Alkylation of Aldehydes or Ketones • Alkylation of an Alkynyl Anion • Alkylation of Enolate Ions • Amide Hydrolysis • Amide Hydrolysis • Amides Can Be Converted into Aldehydes • Amine Synthesis from Nitriles • Amine Synthesis from Nitriles • Amines Convert Acyl Chlorides into Amides • Amines Convert Esters into Amides • An Alkane are Prepared from an Haloalkane • Anhydride Hydrolysis • Arndt-Eistert Homologation • Azide Reduction by LiAlH4 • Azide Reduction by LiAlH4 • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Basicity of Amines • Baylis-Hillman Reaction • Benzylic Oxidation • Birch Reduction • Birch Reduction of Benzene • Blanc Chloromethylation • Bucherer-Bergs Reaction • Buchwald-Hartwig C-N Bond and C-O Bond Formation Reactions • Carbonation of Organometallics • Carboxylate Salt Formation • Carboxylic Acids React with Alcohols to Form Esters • Chan-Lam Coupling Reaction • Chichibabin Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Clemmensen Reduction • Complete Benzylic Oxidations of Alkyl Chains • Complete Benzylic Oxidations of Alkyl Chains • Conjugate Additions of p-Benzoquinones • Conjugated Enone Takes Part in 1,4-Additions • Conversion of Amino with Nitro • Convert Haloalkanes into Alcohols by SN2 • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Decarboxylation of 3-Ketoacids Yields Ketones • Decarboxylation of Substituted Propanedioic • Decomposition of Arenediazonium Salts to Give Phenols • Deoxygenation of the Carbonyl Group • Deprotection of Cbz-Amino Acids • Deprotonation of a Carbonyl Compound at the α -Carbon • Deprotonation of Methylbenzene • Diazo Coupling • Diazotization Reaction • DIBAL Attack Nitriles to Give Ketones • Diorganocuprates Convert Acyl Chlorides into Ketones • Directing Electron-Donating Effects of Alkyl • Dithioacetal Formation • Electrophilic Chloromethylation of Polystyrene • Electrophilic Substitution of the Phenol Aromatic Ring • Enamine Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Enolate Ions Are Protonated to Form ketones • Esters Hydrolyze to Carboxylic Acids and Alcohols • Etherification Reaction of Phenolic Hydroxyl Group • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Formation of an Amide from an Amine and a Carboxylic Acid • Formation of an Amide from an Amine and a Carboxylic Acid • Friedel-Crafts Alkylation of Benzene with Acyl Chlorides • Friedel-Crafts Alkylation of Benzene with Carboxylic Anhydrides • Friedel-Crafts Alkylation of Benzene with Haloalkanes • Friedel-Crafts Alkylation Using Alkenes • Friedel-Crafts Alkylations of Benzene Using Alkenes • Friedel-Crafts Alkylations Using Alcohols • Friedel-Crafts Reaction • Furan Hydrolyzes to Dicarbonyl Compounds • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • General Reactivity • Grignard Reaction • Groups that Withdraw Electrons Inductively Are Deactivating and Meta Directing • Halogenation of Alkenes • Halogenation of Benzene • Halogenation of Phenols • Hantzsch Pyridine Synthesis • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hiyama Cross-Coupling Reaction • Hofmann Elimination • Hofmann Rearrangement • Horner-Wadsworth-Emmons Reaction • Hunsdiecker-Borodin Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrogenation to Cyclohexane • Hydrogenolysis of Benzyl Ether • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Isomerization of β, γ -Unsaturated Carbonyl Compounds • Ketone Synthesis from Nitriles • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Kinetics of Alkyl Halides • Kolbe-Schmitt Reaction • Kumada Cross-Coupling Reaction • Lawesson's Reagent • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • Mannich Reaction • Mannich Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Mercury Ions Catalyze Alkynes to Ketones • Methylation of Ammonia • Methylation of Ammonia • Michael Addition • Nitration of Benzene • Nitriles Hydrolyze to Carboxylic Acids • Nitrosation of Amines • Nucleophilic Aromatic Substitution • Nucleophilic Aromatic Substitution with Amine • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Aldehydes Furnishes Carboxylic Acids • Oxidation of Alkyl-substituted Benzenes Gives Aromatic Ketones • Oxidation of Phenols • Oxidation of Primary Alcohols Furnishes Carboxylic Acids • Passerini Reaction • Paternò-Büchi Reaction • Pechmann Coumarin Synthesis • Peptide Bond Formation with DCC • Periodic Acid Degradation of Sugars • Petasis Reaction • Peterson Olefination • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Alkylbenzene • Preparation of Amines • Preparation of Carboxylic Acids • Preparation of LDA • Prins Reaction • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Reactions of Aldehydes and Ketones • Reactions of Alkyl Halides with Reducing Metals • Reactions of Amines • Reactions of Benzene and Substituted Benzenes • Reactions of Carboxylic Acids • Reactions of Dihalides • Reduction of an Amide to an Amine • Reduction of an Amide to an Amine • Reduction of Carboxylic Acids by LiAlH4 • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reductive Amination • Reductive Amination • Reductive Removal of a Diazonium Group • Reformatsky Reaction • Reimer-Tiemann Reaction • Reverse Sulfonation——Hydrolysis • Ring Opening of Azacyclopropanes • Ring Opening of Azacyclopropanes • Ring Opening of Oxacyclobutanes • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Ketenes • Specialized Acylation Reagents-Vilsmeier Reagent • Stille Coupling • Stobbe Condensation • Strecker Synthesis • Substitution and Elimination Reactions of Alkyl Halides • Sulfonation of Benzene • Suzuki Coupling • Synthesis of 2-Amino Nitriles • Tebbe Olefination • The Acylium Ion Attack Benzene to Form Phenyl Ketones • The Claisen Rearrangement • The Conversion of Carboxylic Acids into Acyl Halides • The Nitro Group Conver to the Amino Function • The Reaction of Alkynyl Anions with Carbonyl Derivatives • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Vilsmeier-Haack Reaction • Williamson Ether Syntheses • Wittig Reaction • Wolff-Kishner Reduction
Historical Records

Related Functional Groups of
[ 1528607-78-4 ]

Fluorinated Building Blocks

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Chemical Structure| 1007-15-4

[ 1007-15-4 ]

3'-Bromo-4'-fluoroacetophenone

Similarity: 0.93

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Aryls

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Chemical Structure| 1007-15-4

[ 1007-15-4 ]

3'-Bromo-4'-fluoroacetophenone

Similarity: 0.93

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Bromides

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Chemical Structure| 1007-15-4

[ 1007-15-4 ]

3'-Bromo-4'-fluoroacetophenone

Similarity: 0.93

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Ketones

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

Chemical Structure| 1007-15-4

[ 1007-15-4 ]

3'-Bromo-4'-fluoroacetophenone

Similarity: 0.93

Chemical Structure| 304445-49-6

[ 304445-49-6 ]

4'-Bromo-3'-fluoroacetophenone

Similarity: 0.98

Chemical Structure| 1196395-22-8

[ 1196395-22-8 ]

(4-Bromo-3-fluorophenyl)(phenyl)methanone

Similarity: 0.95

; ;