Structure of 15529-49-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
White, Robert H. ; Allen, Kylie D. ; Wegener, Gunter ;
Abstract: The anaerobic oxidation of methane (AOM) mitigates the flux of methane from marine sediments into the water column. AOM is performed by anaerobic methanotrophic archaea (ANME) that reverse the methanogenesis pathway and partner bacteria that utilize the released reducing equivalent for sulfate reduction We investigated small-mol. extracts from sediment-free thermophilic enrichment cultures of ANME-1 and sulfate-reducing bacteria using ultraperformance liquid chromatog. with high-resolution mass spectrometry. During the anal., we discovered a novel thioquinoxalinol-containing redox mol. as a major component of the chem. derivatized small-mol. pool. This compound contains both a redox active quinoxaline heterocyclic ring and a thiol group. Addnl., the same structure was identified that contains a sulfate ester on the hydroxyl group, which likely makes the mol. more water soluble Hydrated versions of both structures were also observed as major compounds in the extracts On the basis of reactions of model compounds such as quinoxalin-6-ol, the hydrated version appears to be formed from the addition of water to the dehydropyrazine ring followed by an oxidation These thioquinoxalinol compounds, which represent completely new structures in biochem., may be involved in electron transport processes within and(or) between ANME-1 and sulfate-reducing bacteria, may serve protective roles by reacting with toxic compounds such as hydrogen sulfide, or may transport sulfate as a sulfate ester into the sulfate-reducing bacteria.
Show More >
CAS No. : | 15529-49-4 |
Formula : | C54H45Cl2P3Ru |
M.W : | 958.83 |
SMILES Code : | [Cl-][Ru+2]([Cl-])([P](C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3)([P](C4=CC=CC=C4)(C5=CC=CC=C5)C6=CC=CC=C6)[P](C7=CC=CC=C7)(C8=CC=CC=C8)C9=CC=CC=C9 |
MDL No. : | MFCD00013077 |
InChI Key : | WIWBLJMBLGWSIN-UHFFFAOYSA-L |
Pubchem ID : | 11007548 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 60 |
Num. arom. heavy atoms | 54 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 12 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 267.15 |
TPSA ? Topological Polar Surface Area: Calculated from |
40.77 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
15.43 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.34 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
10.86 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
11.49 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
8.42 |
Log S (ESOL):? ESOL: Topological method implemented from |
-15.38 |
Solubility | 0.0 mg/ml ; 4.17e-16 mol/l |
Class? Solubility class: Log S scale |
Insoluble |
Log S (Ali)? Ali: Topological method implemented from |
-16.42 |
Solubility | 0.0 mg/ml ; 3.81e-17 mol/l |
Class? Solubility class: Log S scale |
Insoluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-23.6 |
Solubility | 2.41e-21 mg/ml ; 2.51e-24 mol/l |
Class? Solubility class: Log S scale |
Insoluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-1.19 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
2.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
1.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
3.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.17 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<3.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
7.8 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Ca. 78 mg | In dichloromethane; at 20℃; for 0.5h; | General procedure: All the solvents used in this work were of reagent quality and usedwithout further purification. Lapachol was obtained according to theprocedure described in [24]. The precursors cis-[RuCl2(PPh3)2(X-bipy)](X = H, methyl (Me) and methoxy (MeO)) and cis-[RuCl2(PPh3)2(phen)] were prepared according to literature [26,27]. Typically[100.0 mg; 0.1 mmol] of the [RuCl2(PPh3)3] was dissolved in degassed20 mL of dichloromethane (Merck) and N-heterocyclic (X-bipy or phen) [22.0 mg; 0.11 mmol] ligand was added. The reaction mixturewas stirred for 30 min at room temperature and the volume of theresulting blue solution was reduced, under vacuum, to ca. 2 mL anddiethyl ether (Merck) was then added to precipitate a red solid, whichwas filtered off, washed several times with diethyl ether, and driedunder vacuum. Yield: ~78 mg (80?90percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
47% | 2-Methyl-acrylic acid 3-trimethoxysilane propyl ester (87 mg, 0.35 mmol) in dry THF was treated with triethylamine (0.20 mL) and the mixture was stirred for 30 min at ambient temperature under air. [RuCl2(PPh3)3] (335 mg, 0.35 mmol) was added and the reaction mixture was stirred at reflux for 2 h, during which there was a color residue was washed with diethyl ether and hexane. Recrystallization from CH2Cl2/hexane afforded dark green crystals of 1 in a week. Yield: 128 mg, 47% (based on Ru). IR (KBr disc, cm-1): nu(C=C) 1623 (s), nu(OCO) 1504 (s) and 1472 (s). MS (FAB): m/z = 781 [M]+, 746 [M-Cl]+, 711 [M-2Cl]+. mueff = 1.93 muB. Anal. for C40H35O2Cl2P2Ru: calcd. C 61.46, H 4.51%; found C 61.41, H 4.48%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84% | With triethylamine; In toluene; at 110℃; for 18h;Inert atmosphere; | A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-dicyclohexylphosphine aniline,1.6 mmol of m-phenylbenzyl alcohol, 1 mmol of bis-diphenylphosphine butane, 1 mmol of RuCl2 (PPh3) 3, 1 mmol of triethylamine and 20 ml of toluene were added and the mixture was heated at 110 C. for 18 h under a nitrogen atmosphere.After cooling and filtering, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 10 in a yield of 84%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | With potassium hydroxide; In benzene; at 100℃; for 18h;Inert atmosphere; | A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diethylphosphine aniline,1.3 mmol of o-methoxybenzyl alcohol, 1 mmol2-dicyclohexylphosphine oxide, 1 mmol RuCl2 (PPh3) 3, 1.1 mmol potassium hydroxide, 20 ml benzene and heating at a temperature of 100 C for 18 h under a nitrogen atmosphere,After cooling and filtering, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 15 in a yield of 80%. |