Home Cart Sign in  
Chemical Structure| 172282-50-7 Chemical Structure| 172282-50-7

Structure of 172282-50-7

Chemical Structure| 172282-50-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 172282-50-7 ]

CAS No. :172282-50-7
Formula : C7H8F2N2O
M.W : 174.15
SMILES Code : NC1=CC=C(OC(F)F)C=C1N
MDL No. :MFCD15147144
InChI Key :GRBDLKBKKHPPQX-UHFFFAOYSA-N
Pubchem ID :15158201

Safety of [ 172282-50-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319
Precautionary Statements:P264-P280-P302+P352-P305+P351+P338-P332+P313-P337+P313-P362

Computational Chemistry of [ 172282-50-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 6
Fraction Csp3 0.14
Num. rotatable bonds 2
Num. H-bond acceptors 3.0
Num. H-bond donors 2.0
Molar Refractivity 41.84
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

61.27 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.02
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.57
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.31
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.87
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.81
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.32

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.15
Solubility 1.24 mg/ml ; 0.00713 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.47
Solubility 0.594 mg/ml ; 0.00341 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.02
Solubility 1.65 mg/ml ; 0.00948 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.25 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.62

Application In Synthesis of [ 172282-50-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 172282-50-7 ]

[ 172282-50-7 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 97963-75-2 ]
  • [ 172282-50-7 ]
  • 2
  • [ 75-15-0 ]
  • [ 172282-50-7 ]
  • [ 97963-62-7 ]
YieldReaction ConditionsOperation in experiment
95.4% In a mechanical stirrer, Reflux condenser, the thermometer of the four-mouth flask, with lye:Sodium carbonate 6. 6 grams + 20 grams of tap water,Stirring to dissolve, slightly cooling, adding4-difluoromethoxy-o-phenylenediamine 34. 8 g,Stir for 20 min. Heated to 30 C,25-35 C20 g of carbon disulfide was added dropwise,Drop finished 30-40 C insulation condensation 6h,Continue to heat up to 60-70 C insulation 6h, cyclization is complete, add activated carbon decolorization,The filtrate was adjusted to pH 5-6 with sulfuric acid, filtered, washed, dried,5-difluoromethoxy-2-mercapto-1H-benzimidazole was obtained in an amount of 33.2 g,The yield was 95.4% based on 4-difluoromethoxy-o-phenylenediamine.
94.5% With sodium hydroxide; In methanol; for 4h;Reflux; Dissolve 8.1 g of 4-difluoromethoxy-o-phenylenediamine in 30 mL of methanol, directly add 35 mL of carbon disulfide and 3.0 g of sodium hydroxide, stir, heat to reflux, and hold for 4 h.Reduce the temperature to room temperature, add 30ml of water, then adjust the pH value to 4 with 10% hydrochloric acid, flocculent precipitates appear, and filter to obtain the crude 2-mercapto-5-difluoromethoxybenzimidazole.Add the obtained crude 2-mercapto-5-difluoromethoxybenzimidazole to a 100 mL flask, and then add 3.0 g of sodium hydroxide, 30 mL of water and 1 g of activated carbon, heat to 80 C, and hold for 1 h.Hot filtration. When the temperature of the filtrate drops to room temperature, adjust the pH value to 4 with a concentration of 10% hydrochloric acid, flocculent precipitates appear, filter,The obtained solid (precipitation) was washed with water to neutrality and dried to obtain a white solid product, 2-mercapto-5-difluoromethoxybenzimidazole, with a yield of 94.5%, a melting point of 260.1-261.5 C, and a purity of more than 99%.
 

Historical Records

Technical Information

Categories