Structure of Fmoc-β-HoPro-OH
CAS No.: 193693-60-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 193693-60-6 |
Formula : | C21H21NO4 |
M.W : | 351.40 |
SMILES Code : | O=C(O)C[C@H]1N(C(OCC2C3=C(C4=C2C=CC=C4)C=CC=C3)=O)CCC1 |
MDL No. : | MFCD01863058 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 26 |
Num. arom. heavy atoms | 12 |
Fraction Csp3 | 0.33 |
Num. rotatable bonds | 6 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 101.49 |
TPSA ? Topological Polar Surface Area: Calculated from |
66.84 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.71 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.29 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.49 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
3.0 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.05 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.11 |
Log S (ESOL):? ESOL: Topological method implemented from |
-4.04 |
Solubility | 0.0323 mg/ml ; 0.0000919 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from |
-4.37 |
Solubility | 0.015 mg/ml ; 0.0000428 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-5.0 |
Solubility | 0.00349 mg/ml ; 0.00000993 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
Yes |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.11 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.77 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: The synthesis was carried out employing a Syro-peptide synthesizer (MultiSynTech) using 24-96 reaction vessels. In each vessel 0.04 mMol of the above resin was placed and the resin was swollen in CH2Cl2 and DMF for 15 min, respectively. The following reaction cycles were programmed and carried out: Unless indicated otherwise, the final coupling of an amino acid was followed by Fmoc deprotection by applying steps 1-3 of the above described reaction cycle. (1485) The appropriately protected amino acid building blocks are commercially available or can be synthesized as known in the art. (1486) Attachment of Carboxylic Acids or Amino Acids to Amino Group- or Carboxylic Group-Bearing Side Chains (1487) Procedure A (1488) Attachment of Carboxylic Acids or Amino Acids to Selectively Deprotected Linear Peptides on Resin: (1489) To remove alloc-protecting groups from amino functions or allyl-protecting groups from carboxy functions present in the resin bound peptide the latter (0.04 mMol) was swollen in freshly distilled CH2Cl2 for at least 15 min followed by adding 0.2 eq tetrakis(triphenyl-phosphine)palladium(0) (10 mM) in dry CH2Cl2 and 10 eq phenylsilane. After shaking the reaction mixture for 15 min at room temperature, the resin was filtered off and a fresh solution of reagents was added to repeat the procedure. Following subsequent washing of the resin with CH2Cl2, DMF and Et2O, the resin was swollen again in CH2Cl2 and the attachment of a carboxylic acid or appropriately protected amino acid was accomplished by subsequently adding a mixture of 3.6 eq of the desired acid and 3.6 eq HOAt dissolved in DMF and 3.6 eq DIC dissolved in DMF allowing the reaction mixture to stand for 1 h disrupted only by occasionally stirring. After filtration and washing of the resin three times with DMF, the coupling was completed by repeating the procedure with a fresh solution of a mixture of 3.6 eq of the same desired acid and 3.6 eq HOAt dissolved in DMF and a mixture of 3.6 eq HATU and 7.2 eq DIPEA in DMF. (1490) In case of amino group-bearing side chains the acids used to be coupled by the above described protocol were octanoic acid or N-Boc protected phenylalanine, in case of carboxy group-bearing side chains the acid coupled by the above described protocol was phenylalanine the carboxy group being protected by tBu. (1491) Cyclization and Work Up of Backbone Cyclized Peptides (1492) Cleavage of the Fully Protected Peptide Fragment (1493) After completion of the synthesis, the resin (0.04 mMol) was suspended in 1 mL (0.13 mMol, 3.4 eq) of 1% TFA in CH2Cl2 (v/v) for 3 minutes, filtered, and the filtrate was neutralized with 1 mL (0.58 mMol, 14.6 eq) of 10% DIEA in CH2Cl2 (v/v). This procedure was repeated three times to ensure completion of the cleavage. The filtrate was evaporated to dryness and a sample of the product was fully deprotected by using a cleavage mixture containing 95% trifluoroacetic acid (TFA), 2.5% water and 2.5% triisopropylsilane (TIS) to be analyzed by reverse phase-HPLC (C18 column) and ESI-MS to monitor the efficiency of the linear peptide synthesis. (1494) Cyclization of the Linear Peptide (1495) The fully protected linear peptide (0.04 mMol) was dissolved in DMF (4 Mol/mL). Then 30.4 mg (0.08 mMol, 2 eq) of HATU, 10.9 mg (0.08 mMol, 2 eq) of HOAt and 28 mul (0.16 mMol, 4 eq) DIEA were added, and the mixture was vortexed at 25 C. for 16 hours and subsequently concentrated under high vacuum. The residue was partitioned between CH2Cl2 and H2O/CH3CN (90/10: v/v). The CH2Cl2 phase was evaporated to yield the fully protected cyclic peptide. (1496) Full Deprotection of the Cyclic Peptide (1497) The cyclic peptide obtained was dissolved in 3 mL of the cleavage mixture containing 82.5% trifluoroacetic acid (TFA), 5% water, 5% thioanisole, 5% phenol and 2.5% ethanedithiole (EDT). The mixture was allowed to stand at 25 C. for 2.5 hours and thereafter concentrated under vacuum. After precipitation of the cyclic fully deprotected peptide in diethylether (Et2O) at 0 C. the solid was washed twice with Et2O and dried. (1498) After purification of the crude products via preparative HPLC the peptides were 20 lyophilized (white powders) and analysed by the following analytical methods: Analytical Method A for Examples 1-17, 19, 39-49 (1499) Analytical HPLC retention times (RT, in minutes) were determined using a Ascentis Express C18 column, 50×3.0 mm, (cod. 53811-U-Supelco) with the following solvents A (H2O+0.1% TFA) and B (CH3CN+0.01% TFA) and the gradient: 0-0.05 min: 97% A, 3% B; 4.95 min: 3% A, 97% B; 5.35 min: 3% A, 97% B; 5.40 min: 97% A, 3% B. Flow rate=1.3 mL/min; UV_Vis=220 nm. Examples 39, 40, 49 are shown in Table 1. The peptides were synthesized as follows: Starting resin was Fmoc-Pro-O-2-chlorotrityl resin, which was prepared as described above. To that resin Xaa7, finally at position 7, was grafted. The linear peptide was synthesized on solid support according to the procedure describe... |