There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 2106-18-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 2106-18-5 |
Formula : | C7H4F4O |
M.W : | 180.10 |
SMILES Code : | FC(F)(F)OC1=CC=CC=C1F |
MDL No. : | MFCD00236322 |
InChI Key : | UKRYEFFTFFRSPY-UHFFFAOYSA-N |
Pubchem ID : | 2777283 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H224-H315-H319-H335 |
Precautionary Statements: | P210-P261-P305+P351+P338 |
Class: | 3 |
UN#: | 1993 |
Packing Group: | Ⅱ |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.14 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 33.08 |
TPSA ? Topological Polar Surface Area: Calculated from |
9.23 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.07 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.35 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.41 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.72 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.81 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.07 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.31 |
Solubility | 0.0892 mg/ml ; 0.000495 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.22 |
Solubility | 0.108 mg/ml ; 0.000601 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.3 |
Solubility | 0.0898 mg/ml ; 0.000499 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.02 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.6 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
...presented by the following formula (4) which can respectively correspond to the formula (1) can be obtained. (D) Fluorine substituted aromatic compound represented by the formula (4) corresponding to the hydroxy compound wherein X1 is a substituent of the group (a) in the formula(1): ... 2-fluorobenzophenone, 3-fluorobenzophenone, 4-fluorobenzophenone, 2-trifluoromethylfluorobenzene, 3-trifluoromethylfluorobenzene, 4-trifluoromethylfluorobenzene, 2-trichloromethylfluorobenzene, 3-trichloromethylfluorobenzene, 4-trichloromethylfluorobenzene, 2-trifluoromethoxyfluorobenzene, 3-trifluoromethoxyfluorobenzene, 4-trifluoromethoxyfluorobenzene, 2-trichloromethoxyfluorobenzene, 3-trichloromethoxyfluorobenzene, 4-trichloromethoxyfluorobenzene, 2-fluorophenylmethylsulfone, 3-fluorophenylmethylsulfone, ... |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With lithium diisopropyl amide; In tetrahydrofuran; hexane; water; at -78℃; for 1.5h; | Example 20: 4-[2-FLUORO-3-(TRIFLUOROMETHOXY)PHENYL]-1-PROPYLPIPERIDIN-4-OL To a solution of <strong>[2106-18-5]1-fluoro-2-(trifluoromethoxy)benzene</strong> (1.22 g, 6.77 mmol) in dry tetrahydrofurane (30 ml) at-78 C, under nitrogen, lithium diisopropylamide (2.5 M in hexane, 3.0 ml, 7.45 mmol) was added dropwise. The mixture was stirred for 1 h after which a solution of newly distilled 4-propyl-1-piperidone (0.96 g, 6.77 mmol) in dry tetrahydrofuran (20 ml) was added drop wise. The resulting mixture was stirred at-78 C for 30 min and then brought to ambient temperature. Water (100 ml) was added and the mixture was extracted with ethylacetate (3x100 ml). The combined organic phases was dried (MgS04), filtered and evaporated to dryness. The oily residue was purified by flash column chromatography (ethylacetate/methanol, 1: 1) to give the title compound (0.83 g). MS m/z (rel. intensity, 70 eV) 321 (M+, 5), 293 (14), 292 (bp), 274 (25), 207 (10). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To a solution of <strong>[2106-18-5]1-fluoro-2-(trifluoromethoxy)benzene</strong> [2106-18-5] (20.0 g, 111 mmol) in dry THF (200 mL), cooled to -78C, was added dropwise n-BuLi (2.5 M solution in n-hexane; 65 mL, 160 mmol) and subsequently TMEDA (60 mL). The reaction mixture was stirred for additional 60 min at -78C, followed by addition of a solution of iodine (30.2 g, 120 mmol) in dry THF (50 mL). The resulting mixture was stirred for 1 h and then quenched by addition of a saturated aqueous NH4CI solution (20 mL). The organic layer was washed with 1 N HCI, water and brine, and dried over MgS04. Volatiles were removed in vacuo to afford the title compound as yellow oil. The product was used in the next reaction step without further purification. MS (LC/MS): 306.0 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | With sulfuric acid; nitric acid; at -5 - 40℃; for 12h; | To a 500 mL three-necked flask, concentrated sulfuric acid (20 mL, 0.35 mol, 3.5 eq)The raw material o-fluorotrifluoromethoxybenzene (18 g, 0.1 mol, 1 eq) was added portionwise with stirring,After stirring for half an hour the solution is clear,Cool to -5 C with ice-salt bath,Concentrated nitric acid (6.6 mL, 0.1 mol, 1 eq) was slowly added dropwise,The reaction is exothermic, the dropping rate to maintain the internal temperature does not exceed 0 ,After the addition is completed,After stirring at 0 C for 1 hour,Heated to 40 C and stirred for 12h,After the reaction solution was cooled to room temperature,Slowly poured into crushed ice, and constantly stirring,A large number of yellow solid precipitation, suction filtration,The filter cake was washed three times with water, drained,Dried under vacuum to give a yellow solid 18g, yield 80%, HPLC purity 95%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With tris(2,2-bipyridine)ruthenium(II) hexafluorophosphate; In acetonitrile; at 20℃; for 16h;Glovebox; Irradiation; Sealed tube; Inert atmosphere; | General procedure: In a glovebox, to an oven-dried 20 mL screw cap vial was added 2- (3, 5-bis (trifluoromethyl) phenyl) -4-nitro-l- (trifluoromethoxy) -6- (trifluoromethyl) -lii-benzo [d] imidazole (1) (105 mg, 0.200 mmol, 1.00 equiv) , arene (2.00 mmol, 10.0 equiv) and Ru (bpy) 3 ( REe) 2, (0.0516 mg, 0.0600 pmol, 0.0300 moll) . Then MeCN (1.00 mL, 0.200 M) and a magnetic stir bar were added. The vial was capped and taken out of the glovebox. The reaction mixture was then stirred and irradiated with a 10 W LED (402 nm) at room temperature. After 16 h, an internal standard PhCF3 (5.84 mg, 4.95 pL, 0.04 mmol, 0.200 equiv) was added to the reaction vial, 0.200 mL of the resulting mixture was transferred to a 2 mL vial containing 0.500 mL of CDCI3. After the yield was determined using 19F NMR, the NMR sample was combined with the rest of the reaction mixture and the solvent was removed in vacuo. The crude material was purified by HPLC under noted conditions. The fractions containing the desired product were combined and extracted with CDCI3 (3 1 mL) , dried with magnesium sulfate, and filtered. The filtrate was concentrated in vacuo to furnish the desired product of trifluoromethoxylation . For volatile compounds, after purification by HPLC, the desired product was extracted with 1 mL CDC13 and then directly characterized. The NMR peaks are referring to CH3CN residue signal ^H-NMR: d 1.94, 13C~NMR: 5 118.26, 1.32).2 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With tris(2,2-bipyridine)ruthenium(II) hexafluorophosphate; In acetonitrile; at 20℃; for 16h;Glovebox; Irradiation; Sealed tube; Inert atmosphere; | General procedure: In a glovebox, to an oven-dried 20 mL screw cap vial was added 3- methyl-4-nitro-l- ( trifluoromethoxy) -6- (trifluoromethyl ) -1H- benzo[d] [1, 2, 3] triazol-3-ium trifluoromethanesulfonate (lb) (98.0 mg, 0.200 mmol, 1.00 equiv), arene (2.00 mmol, 10.0 equiv) and Ru (bpy) 3 (PFe) 2, (1.72 mg, 2.00 pmol, 1.00 mol%). Then MeCN (1.00 mL, 0.200 M) and a magnetic stir bar were added. The vial was capped and taken out of the glovebox. The reaction mixture was then stirred and irradiated with 2 of 10 W LED (Xmax = 447 nm) at room temperature. After 16 h, an internal standard PhCF3 (24.6 pL, 0.200 mmol, 1.00 equiv) was added to the reaction vial, 0.200 mL of the resulting mixture was transferred to a 2 mL vial containing 0.500 mL of CDC13. After the yield was determined using 19F NMR, the NMR sample was combined with the rest of the reaction mixture and the solvent was removed in vacuo. The crude material was purified by HPLC under noted conditions. The fractions containing the desired product were combined and extracted with CDC13 (3 x 10.0 mL) , dried with magnesium sulfate, and filtered unless otherwise noted. The filtrate was concentrated in vacuo to furnish the desired product of trifluoromethoxylation . For volatile compounds, after purification by HPLC, the desired product was extracted with 1 mL CDCI3 and then directly characterized. The NMR peaks are referring to CCN residue signal (1H-NMR : d 1.94, 13C-NMR: d 118.26, 1.32).2 |
A104891 [352-67-0]
1-Fluoro-4-(trifluoromethoxy)benzene
Similarity: 0.91
A287308 [1077-01-6]
1-Fluoro-3-(trifluoromethoxy)benzene
Similarity: 0.90
A179471 [195206-85-0]
3,5-Difluoro-4-(trifluoromethoxy)phenol
Similarity: 0.87
A122429 [105529-58-6]
4-Bromo-2-fluoro-1-(trifluoromethoxy)benzene
Similarity: 0.84
A103395 [177596-38-2]
3-Fluoro-4-(trifluoromethoxy)phenol
Similarity: 0.83
A104891 [352-67-0]
1-Fluoro-4-(trifluoromethoxy)benzene
Similarity: 0.91
A287308 [1077-01-6]
1-Fluoro-3-(trifluoromethoxy)benzene
Similarity: 0.90
A179471 [195206-85-0]
3,5-Difluoro-4-(trifluoromethoxy)phenol
Similarity: 0.87
A122429 [105529-58-6]
4-Bromo-2-fluoro-1-(trifluoromethoxy)benzene
Similarity: 0.84
A103395 [177596-38-2]
3-Fluoro-4-(trifluoromethoxy)phenol
Similarity: 0.83
A104891 [352-67-0]
1-Fluoro-4-(trifluoromethoxy)benzene
Similarity: 0.91
A287308 [1077-01-6]
1-Fluoro-3-(trifluoromethoxy)benzene
Similarity: 0.90
A179471 [195206-85-0]
3,5-Difluoro-4-(trifluoromethoxy)phenol
Similarity: 0.87
A122429 [105529-58-6]
4-Bromo-2-fluoro-1-(trifluoromethoxy)benzene
Similarity: 0.84
A103395 [177596-38-2]
3-Fluoro-4-(trifluoromethoxy)phenol
Similarity: 0.83
A104891 [352-67-0]
1-Fluoro-4-(trifluoromethoxy)benzene
Similarity: 0.91
A287308 [1077-01-6]
1-Fluoro-3-(trifluoromethoxy)benzene
Similarity: 0.90
A179471 [195206-85-0]
3,5-Difluoro-4-(trifluoromethoxy)phenol
Similarity: 0.87
A122429 [105529-58-6]
4-Bromo-2-fluoro-1-(trifluoromethoxy)benzene
Similarity: 0.84
A103395 [177596-38-2]
3-Fluoro-4-(trifluoromethoxy)phenol
Similarity: 0.83