Structure of 21524-39-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 21524-39-0 |
Formula : | C7H3F2N |
M.W : | 139.10 |
SMILES Code : | N#CC1=CC=CC(F)=C1F |
MDL No. : | MFCD00009976 |
InChI Key : | GKPHNZYMLJPYJJ-UHFFFAOYSA-N |
Pubchem ID : | 88935 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302+H312+H332-H315-H319-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 31.07 |
TPSA ? Topological Polar Surface Area: Calculated from |
23.79 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.61 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.84 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.68 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.32 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.64 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.22 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.31 |
Solubility | 0.688 mg/ml ; 0.00495 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.96 |
Solubility | 1.52 mg/ml ; 0.011 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.01 |
Solubility | 0.135 mg/ml ; 0.000971 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.84 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.58 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
13% | With sulfuric acid; potassium nitrate; at 0℃; for 3.0h;Inert atmosphere; | 2,3-difluoro-5-nitrobenzonitrile (0272) At 0 C., to a solution of 2,3-difluorobenzonitrile (20.8 g, 149.82 mmol) in sulfuric acid (100 mL) was added potassium nitrate (30.3 g, 299.59 mmol) in portions over 1 h period. The resulting solution was kept stirring for 2 h at 0 C. and then ice water (500 mL) was added. The resulting mixture was extracted with ethyl acetate (300 mL×3). The organic phases were combined, washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash chromatography eluting with ethyl acetate in hexane (0% to 10% gradient) to yield 2,3-difluoro-5-nitrobenzonitrile as brown solid (3.6 g, 13%). |
11% | With sulfuric acid; potassium nitrate; at 0℃; for 2.0h; | Potassium nitrate (404 mg, 4.0 mmol) to a solution of 2,3- difluorobenzonitrile (278 mg, 2.0 mmol) in sulfuric acid (2 mL) at 00C. After stirring at 00C for 2 h the reaction was quenched with ice water (5 mL). The mixture was extracted with ethyl acetate (3x10 mL). The organic layer was dried and concentrated to give the crude product which was purified by silica gel (PE : EA = 40 : 1) to give the title compound as a yellow solid. (40 mg, 11%). 1H NMR (400 MHz, CDCl3): delta 8. 25-8.22 (m, IH), 7.69-7.63 (m, IH). LC/MS: m/e = 185 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In N,N-dimethyl-formamide; at 100℃; for 2.5h; | A mixture of 3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (1.25 g, 8.1 1 mmol), potassium carbonate (1.68 g, 12.16 mmol), 2,3-difluorobenzonitrile (1.08 mL, 9.73 mmol) in dimethylformamide (12 mL) is heated at 100C with the aid of a magnetic stirred. After 2.5 hr. the reaction mixture is treated with water and extracted with ethyl acetate. The organic layer is decanted, washed with brine, dried over magnesium sulfate and the solvent evaporated under reduced pressure to give 2.3 g of l-(2-cyano-6-fluoro- phenyl)-3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (this compound is contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 274 (M+1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A mixture of 3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (1.25 g, 8.1 1 mmol), potassium carbonate (1.68 g, 12.16 mmol), 2,3-difluorobenzonitrile (1.08 mL, 9.73 mmol) in dimethylformamide (12 mL) is heated at 100C with the aid of a magnetic stirred. After 2.5 hr. the reaction mixture is treated with water and extracted with ethyl acetate. The organic layer is decanted, washed with brine, dried over magnesium sulfate and the solvent evaporated under reduced pressure to give 2.3 g of l-(2-cyano-6-fluoro- phenyl)-3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (this compound is contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 274 (M+1). A capped vial is charged with ethyl l-(2-cyano-6-fluoro-phenyl)-3-methyl- pyrazole-4-carboxylate (1.97 g, 7.21 mmol) (contaminated with the other pyrazole regioisomer in a ratio of 75:25, 1,2-ethanediamine, N-methyl- (6 mL, 68.02 mmol) and phosphorus pentasulfide (229 mg, 1,01 mmol) and the mixture is stirred at 1 10C for 30 min and then allow to reach rt. Solvent is evaporated in vacuo and the residue purified by normal phase Isco chromatography using dichloromethane/2M ammonia in methanol from 95/5 to 85/15 as eluent to yield 2.1 1 g of ethyl l-[2-fluoro-6-(l-methyl-4,5- dihydroimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 331 (M+1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A mixture of 3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (1.25 g, 8.1 1 mmol), potassium carbonate (1.68 g, 12.16 mmol), 2,3-difluorobenzonitrile (1.08 mL, 9.73 mmol) in dimethylformamide (12 mL) is heated at 100C with the aid of a magnetic stirred. After 2.5 hr. the reaction mixture is treated with water and extracted with ethyl acetate. The organic layer is decanted, washed with brine, dried over magnesium sulfate and the solvent evaporated under reduced pressure to give 2.3 g of l-(2-cyano-6-fluoro- phenyl)-3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (this compound is contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 274 (M+1). A capped vial is charged with ethyl l-(2-cyano-6-fluoro-phenyl)-3-methyl- pyrazole-4-carboxylate (1.97 g, 7.21 mmol) (contaminated with the other pyrazole regioisomer in a ratio of 75:25, 1,2-ethanediamine, N-methyl- (6 mL, 68.02 mmol) and phosphorus pentasulfide (229 mg, 1,01 mmol) and the mixture is stirred at 1 10C for 30 min and then allow to reach rt. Solvent is evaporated in vacuo and the residue purified by normal phase Isco chromatography using dichloromethane/2M ammonia in methanol from 95/5 to 85/15 as eluent to yield 2.1 1 g of ethyl l-[2-fluoro-6-(l-methyl-4,5- dihydroimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 331 (M+1). Potassium permanganate (1.58 g, 10 mmmol) and montmorillonite K- 10 (3.16 g) are grounded together in a mortar until a fine homogeneous powder is obtained.KMn04-montmorillonite K-10 (3.2 g, 6.78 mmol) is added portionwise to a solution of ethyl l-[2-fluoro-6-(l-methyl-4,5-dihydroimidazol-2-yl)phenyl]-3-methyl-pyrazole-4- carboxylate (1.12 g, 3.39 mmol) (contaminated with the other pyrazole regioisomer in a ratio 75:25) in acetonitrile (84.76 mL, 1.62 moles). The mixture is stirred at room temperature for 6.5 hr. and more KMn04-montmorillonite K-10 (0.8 g, 1.69 mmol) is added portionwise and the mixture stirred at room temperature overnight. Ethanol is added and stirred for additional 20 min. Then the reaction mixture is filtered through a short pad of celite and the solid material is washed with acetonitrile. The solvent is evaporated under reduced pressure and the crude mixture is purified normal phase Isco chromatography using ethyl acetate as eluent to yield 518 mg of l-[2-fluoro-6-(l- methylimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 329 (M+1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A mixture of 3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (1.25 g, 8.1 1 mmol), potassium carbonate (1.68 g, 12.16 mmol), 2,3-difluorobenzonitrile (1.08 mL, 9.73 mmol) in dimethylformamide (12 mL) is heated at 100C with the aid of a magnetic stirred. After 2.5 hr. the reaction mixture is treated with water and extracted with ethyl acetate. The organic layer is decanted, washed with brine, dried over magnesium sulfate and the solvent evaporated under reduced pressure to give 2.3 g of l-(2-cyano-6-fluoro- phenyl)-3 -methyl- lH-pyrazole-4-carboxylic acid ethyl ester (this compound is contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 274 (M+1). A capped vial is charged with ethyl l-(2-cyano-6-fluoro-phenyl)-3-methyl- pyrazole-4-carboxylate (1.97 g, 7.21 mmol) (contaminated with the other pyrazole regioisomer in a ratio of 75:25, 1,2-ethanediamine, N-methyl- (6 mL, 68.02 mmol) and phosphorus pentasulfide (229 mg, 1,01 mmol) and the mixture is stirred at 1 10C for 30 min and then allow to reach rt. Solvent is evaporated in vacuo and the residue purified by normal phase Isco chromatography using dichloromethane/2M ammonia in methanol from 95/5 to 85/15 as eluent to yield 2.1 1 g of ethyl l-[2-fluoro-6-(l-methyl-4,5- dihydroimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 331 (M+1). Potassium permanganate (1.58 g, 10 mmmol) and montmorillonite K- 10 (3.16 g) are grounded together in a mortar until a fine homogeneous powder is obtained.KMn04-montmorillonite K-10 (3.2 g, 6.78 mmol) is added portionwise to a solution of ethyl l-[2-fluoro-6-(l-methyl-4,5-dihydroimidazol-2-yl)phenyl]-3-methyl-pyrazole-4- carboxylate (1.12 g, 3.39 mmol) (contaminated with the other pyrazole regioisomer in a ratio 75:25) in acetonitrile (84.76 mL, 1.62 moles). The mixture is stirred at room temperature for 6.5 hr. and more KMn04-montmorillonite K-10 (0.8 g, 1.69 mmol) is added portionwise and the mixture stirred at room temperature overnight. Ethanol is added and stirred for additional 20 min. Then the reaction mixture is filtered through a short pad of celite and the solid material is washed with acetonitrile. The solvent is evaporated under reduced pressure and the crude mixture is purified normal phase Isco chromatography using ethyl acetate as eluent to yield 518 mg of l-[2-fluoro-6-(l- methylimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 329 (M+1). 4. Gamma 1 - r2-Fruoro-6-C 1 -methylimidazol-2-yl phenyl1-3 -methyl-pyrazol-4-yllmethanolThis compound is essentially prepared as described in Preparation 29 by using ethyl l-[2-fluoro-6-(l-methylimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carboxylate (contaminated with the other pyrazole regioisomer in a ratio 75:25) in 99% yield. MS (m/z): 287 (M+l).5. l-r2-Fluoro-6-(l-methylimidazol-2-yl phenyl1-3-methyl-pyrazole-4-carbaldehvdeThe following compound is essentially prepared as described in Preparation 30 by using [l-[2-fluoro-6-(l-methylimidazol-2-yl)phenyl]-3-methyl-pyrazol-4-yl]methanol (contaminated with the other pyrazole regioisomer in a ratio 75:25). Residue is purified by normal phase Isco chromatography using ethyl acetate as eluent to give 64% yield of the title compound (contaminated with the other pyrazole regioisomer in a ratio 75:25). MS (m/z): 285 (M+l). To a screw-cap test tube containing a mixture of l-[2-fluoro-6-(l- methylimidazol-2-yl)phenyl]-3-methyl-pyrazole-4-carbaldehyde (288 mg, 1.01 mmol) (contaminated with the other pyrazole regioisomer in a ratio 75:25) and 2-chloro-4,4- difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine] (31 1.72 mg, 1.1 1 mmol) in 1,2- dichloroethane (3 mL) is stirred at room temperature for 1 hr. and then sodium triacetoxyborohydride (429.41 mg, 2.03 mmol) is added. The reaction tube is sealed and stirred at room temperature for 18 hr. with the aid of a magnetic stirrer. Then, the reaction is quenched by addition of sodium bicarbonate saturated solution and the compound is extracted with ethyl acetate. The organic layer is separated, dried over magnesium sulfate and the solvent removed under reduced pressure. The compound is purified by supercritical fluid chromatography using AD-H as stationary phase to provide 230 mg (41%) of the title compound as white solid. MS (m/z): 548 (M+l). |
A365450 [508203-48-3]
2,3-Difluoro-4-methylbenzonitrile
Similarity: 1.00
A326055 [847502-83-4]
3,4-Difluoro-2-methylbenzonitrile
Similarity: 0.97
A134254 [1835-65-0]
3,4,5,6-Tetrafluorophthalonitrile
Similarity: 0.93
A365450 [508203-48-3]
2,3-Difluoro-4-methylbenzonitrile
Similarity: 1.00
A326055 [847502-83-4]
3,4-Difluoro-2-methylbenzonitrile
Similarity: 0.97
A134254 [1835-65-0]
3,4,5,6-Tetrafluorophthalonitrile
Similarity: 0.93
A365450 [508203-48-3]
2,3-Difluoro-4-methylbenzonitrile
Similarity: 1.00
A326055 [847502-83-4]
3,4-Difluoro-2-methylbenzonitrile
Similarity: 0.97
A134254 [1835-65-0]
3,4,5,6-Tetrafluorophthalonitrile
Similarity: 0.93