Structure of 21806-61-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 21806-61-1 |
Formula : | C3H4O3S |
M.W : | 120.13 |
SMILES Code : | O=S1(C=CCO1)=O |
MDL No. : | MFCD12405143 |
InChI Key : | KLLQVNFCMHPYGL-UHFFFAOYSA-N |
Pubchem ID : | 10898703 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 7 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.33 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 24.0 |
TPSA ? Topological Polar Surface Area: Calculated from |
51.75 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.84 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
-0.35 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.94 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.63 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.21 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.2 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.36 |
Solubility | 51.9 mg/ml ; 0.432 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.27 |
Solubility | 63.8 mg/ml ; 0.531 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
0.14 |
Solubility | 167.0 mg/ml ; 1.39 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.28 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.2 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94% | With triethylamine; In toluene; for 3h;Product distribution / selectivity; | Preparation of (Z)-3-(tert-butylamino)prop-1-ene-1-sulfonic acid (Compound N20); To a boiling solution of allyl bromide (21.6 mL, 250 mmol) in a solvent mixture of EtOH and H2O (200 mL, v/v=3:1) was added dropwise a solution of sodium sulfite (15.75 g, 125 mmol) in water (60 mL). The reaction mixture was heated under reflux for 3 hours, and concentrated to dryness under reduced pressure. The obtained white solid was suspended in EtOH in water (130 mL, 90%), heated for 30 minutes, cooled to room temperature, and collected by filtration, giving sodium prop-2-ene-1-sulfonate (14 g, 76%); 1H NMR (500 MHz, D2O) delta 3.55 (d, J=7.3 Hz, 2H), 5.35-5.41 (m, 2H), 5.85-6.00 (m, 1H). To a stirred solution of sulfonate obtained from step 1 (12.0 g, 84 mmol) in water (48 mL) was added bromine (about 4.5 mL) dropwise with stirring until the solution turned pale brown. The solution was stirred at room temperature for 3 hours. A small amount of Na2SO3 was added to destroy the excess bromine. The solvent was then removed in vacuo and a white solid was obtained. Without further purification, the 2,3-dibromo-1-propanesulfonate was treated with concentrated HCl (50 mL) by stirring at room temperature for 1 day. The precipitate (inorganic salt) was removed by filtration. The filtrate was concentrated to yellow syrup. Without further purification, the syrup residue was subjected to vacuum distillation at 140-150 C. to give 2-bromo-1,3-propane sultone (6.5 g, 32%); 1H NMR (500 MHz, CDCl3) delta 3.52 (dd, J=14.0 & 7.0 Hz, 1H), 3.88 (dd, J=14.0 & 7.0 Hz, 1H), 4.50-4.60 (m, 1H), 4.70-4.82 (m, 2H). To a solution of 2-bromo-1,3-propane sultone (obtained in Step 2, 8.0 g, 39.80 mmol) in toluene (200 mL) was added NEt3 (9 mL, 65 mmol). The reaction mixture was stirred for 3 h (or until complete consumption of the starting material), diluted with an aqueous solution of HCl (1 M), and extracted twice with EtOAc. The organic layer was dried over Na2SO4 and concentrated to give 1,3-prop-1-ene sultone (4.5 g, 94%) as a white solid; 1H NMR (500 MHz, CDCl3) delta 5.11 (dd, J=2.2 & 2.2 Hz, 2H), 6.80 (dt, J=6.6 & 2.2 Hz, 1H), 7.00 (dt, J=6.6 & 2.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) delta 72.54, 124.76, 137.04. To a solution of 1,3-prop-1-ene sultone (obtained in step 3, 36 mg, 3 mmol) in THF (5 mL) was added tert-butylamine (316 muL, 3 mmol). The reaction mixture was refluxed for 4 h, and then concentrated to dryness. The residual solid material was suspended in a solvent mixture of EtOH, acetone and ether, heated for 15 minutes, and cooled to room temperature. The solid was collected by filtration, washed with ether then dried, providing the title compound (130 mg, 22%); 1H NMR (500 MHz, D2O) delta 1.24 (s, 9H), 4.00 (d, J=7.0 Hz, 2H), 5.94 (m, 1H), 6.50 (d, J=11.0 Hz, 1H). 13C NMR (125 MHz, D2O) delta 25.08, 37.84, 57.63, 127.81, 136.08. ES-MS 192 (M-1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
92% | Grubbs catalyst first generation; In dichloromethane; for 2h;Heating / reflux;Product distribution / selectivity; | Preparation of 6-(aminomethyl)-3,4-dimethylcyclohex-3-ene-1-sulfonic acid (Compound N1); To a cold (-40 C.) solution of allyl alcohol (20 ml, 300 mmol) and NEt3 (26 mL, 186 mmol) in THF (150 mL) was added dropwise 2-chloroethanesulfonyl chloride (10.4 mL, 100 mmol). The reaction was stirred at -40 to -20 C. for 5 hours, quenched with HCl (1M) and extracted with EtOAc. The organic layer was washed with water and dried over Na2SO4. The product was purified by column chromatography using Hexanes/EtOAc 80/20 as eluant to afford allyl vinylsulfonate as a yellowish oil (7 g, 47%). 1H NMR (500 MHz, CDCl3) delta 4.55 (m, 2H), 5.34 (m, 2H), 5.85 (m, 1H), 6.06 (d, J=6.0 Hz, 1H), 6.35 (d, J=17.0 Hz, 1H), 6.50 (dd, J=17 & 9.5 Hz, 1H). To a degassed (by Nitrogen bubbling) solution of allyl vinylsulfonate (3 g, 20.24 mmol) in CH2Cl2 (1 L) was added Grubbs Catalyst (170 mg, 0.2 mmol). The reaction was heated at reflux for 2 h then concentrated. The residual material was applied on silica gel column using Hexanes/EtOAc 80/20 to 50/50 as eluant to afford 1,3-prop-1-ene sultone 2.2 g (92%). 1H NMR (500 MHz, CDCl3) delta 5.11 (dd, J=2.2 & 2.2 Hz, 2H), 6.80 (dt, J=6.6 & 2.2 Hz, 1H), 7.00 (dt, J=6.6 & 2.0 Hz, 1H); 3C NMR (125 MHz, CDCl3) delta 72.54, 124.76, 137.04. A mixture of 1,3-propene sultone (1.44 g, 12 mmol), 2,3-dimethyl-1,3-butanediene (9.5 mL, 84 mmol) in 30 mL of toluene was placed in a sealed tube and heated at 150 C. for 15 hours. The solvent was removed and the residual material was applied on silica gel column using Hexanes/EtOAc 80:20 to 70:30 as eluant to afford 700 mg (86%) of the Diels-Alder adduct. 1H NMR (500 MHz, CDCl3) delta 1.62 (s, 3H), 1.66 (s, 3H), 1.88-1.92 (m, 1H), 2.28-2.42 (m, 3H), 3.12-3.18 (m, 1H), 3.48 (q, J=7.6 Hz, 1H), 3.96 (t, J=8.5 Hz, 1H), 4.40 (dd, J=8.50 & 7.25 Hz, 1H). 13C NMR (125 MHz, CDCl3) delta 19.13, 19.25, 27.20, 30.79, 34.18, 53.04, 72.61, 122.70, 123.44. To an ice-cooled solution of NH4OH (28% in water, 22 mL, 168 mmol) in a co-solvent of THF and EtOH (20 mL, v/v=1:1) was added slowly via a syringe pump a solution of the Diels-Alder adduct from step 3 (680 mg, 3.36 mmol). After the addition (2 h), the reaction was stirred for two more hours until TLC indicated complete consumption of the starting material. The solvent was evaporated and the resulting solid was suspended in mixed solvents of EtOH, acetone and ether, heated for 15 minutes and cooled. The solid was collected by filtration, washed with ether and dried, to give the title compound (450 mg, 61%). 1H NMR (500 MHz, D2O) delta 1.49 (s, 3H), 1.52 (s, 3H), 1.86-1.92 (m, 1H), 2.14-2.28 (m, 3H), 2.44-2.49 (m, 1H), 2.80 (dd, J=13.0 & 6.0 Hz, 1H), 3.10-3.16 (m, 1H), 3.27 (dd, J=14.0 & 6.0 Hz, 1H); 13C NMR (125 MHz, D2O) delta 18.02, 18.28, 28.93, 32.36, 34.69, 38.79, 57.85, 123.09, 123.72. ES-MS 218 (M-1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With 4-methoxy-phenol; at 135℃; under 2.0 Torr; for 1h; | In a 250 ml flash bottle, 30 g of 3-hydroxypropene sulfonic acid and 3 g of p-methoxyphenol are added and the oil bath is heated to 135 C. with vigorous stirring while evacuating to 2 mmHg and condensed with water at 70 C., leaving the remaining 3-hydroxypropene Sulfonic acid even within 1 hourAfter being pumped into a flash bottle for dehydration, the temperature in the flash bottle was always controlled at 135-155 C. during the dehydration process. The condensate was collected to obtain 102 g of 1,3-propene sultone (M120) as a gray crystal. 79% (based on 3-hydroxypropene sulfonic acid), purity99.2%, Melting point 79-83C, based on propyneol, yield 56.7%, based on cis-1,3-dichloropropene, yield 51%. |
Ca. 66% | With pyridinium p-toluenesulfonate; at 100℃; under 5.0 Torr;Green chemistry; | 478 g of the 3-hydroxy-1-propenylsulfonic acid obtained above was placed in a 2 L four-necked flask, and 20 g of pyridine p-toluenesulfonate was placed.The reaction temperature was controlled to 100 C, and the degree of vacuum was 5 mmHg until no liquid distillation was carried out, and the product was extracted with ethyl acetate.Concentration and crystallization gave a solid 266 g, which was propylene-1,3-propane sultone, and the purity of the gas phase was 99%, and the yield was about 66%. |
64% | at 20 - 110℃; under 2.2502299999999997 Torr; | The brown viscous liquid is cooled to room temperature,Assembly pump dehydration device (composed of distillation head, air condenser),The pressure is 300Pa,Temperature 110 under the conditions of the use of oil pump dehydration,Distilled to give 30.7 g of a white solid,Is 1-propenyl-1,3-sulfonic acid lactone,The yield was 64%GC detection purity of 99.99%,The melting point was 82.5 C. |