Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 22037-28-1 Chemical Structure| 22037-28-1

Structure of 22037-28-1

Chemical Structure| 22037-28-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 22037-28-1 ]

CAS No. :22037-28-1
Formula : C4H3BrO
M.W : 146.97
SMILES Code : BrC1=COC=C1
MDL No. :MFCD00005347
InChI Key :LXWLEQZDXOQZGW-UHFFFAOYSA-N
Pubchem ID :89164

Safety of [ 22037-28-1 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H225
Precautionary Statements:P501-P240-P210-P233-P243-P241-P242-P280-P370+P378-P303+P361+P353-P403+P235
Class:3
UN#:1993
Packing Group:

Computational Chemistry of [ 22037-28-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 6
Num. arom. heavy atoms 5
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 26.41
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

13.14 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.83
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.18
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.04
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.92
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.15
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.82

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.74
Solubility 0.267 mg/ml ; 0.00181 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.09
Solubility 1.2 mg/ml ; 0.00814 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.44
Solubility 0.532 mg/ml ; 0.00362 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.65 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

3.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.19

Application In Synthesis of [ 22037-28-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 22037-28-1 ]

[ 22037-28-1 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 22037-28-1 ]
  • [ 80500-27-2 ]
  • [ 1303573-60-5 ]
YieldReaction ConditionsOperation in experiment
70% With tetrabutylammomium bromide; palladium diacetate; sodium carbonate; In water; at 150℃; for 0.0833333h;Microwave irradiation; Sealed vessel; General procedure: Method A. A solution of Pd(OAc)2 (25.2 mg, 0.112 mmol) and triphenylphosphine (147 mg, 0.560 mmol) in absolute ethanol (4 mL) and anhydrous toluene (4 mL) was stirred at RT under nitrogen for 10 min. After that period, commercially available 5-chloro-2-nitrotoluene 4 (646 mg, 3.76 mmol), 4 mL of 2M aqueous Na2CO3, and the appropriate boronic acid R1B(OH)2 (6.03 mmol) were sequentially added. The resulting mixture was heated at 100 C in a sealed vial under nitrogen overnight. After being cooled to RT, the mixture was diluted with water and extracted with EtOAc. The combined organic phase were dried and concentrated. The crude product was purified by flash chromatography over silica gel column using n-Hex/EtOAc or CHCl3/MeOH mixtures as the eluent.
  • 2
  • [ 22037-28-1 ]
  • [ 13417-49-7 ]
  • C10H12O3 [ No CAS ]
  • 3
  • [ 22037-28-1 ]
  • [ 77-77-0 ]
  • [ 2050-48-8 ]
  • 1-bromo-3-((4-bromophenyl)sulfonyl)benzene [ No CAS ]
YieldReaction ConditionsOperation in experiment
52 mg; 14 mg 2.1) Diels- Alder reaction of 3-bromofuran with divinylsulfone (0166) In a carousel tube fitted with a PTFE septum screw cap divinylsulfone (1.0 g, 8.46 mmol) was weighted. Then, 3-bromofuran (6.3 g, 42.9 mmol) and pyridine (3 mL) were added. The reaction mixture was stirred at 80C during 24 h and was monitored by NMR analysis. The conversion is 95 % to an endo/exo mixture of Diels- Alder adducts. (0167) The reaction mixture was concentrated in vacuo and purified by flash chromatography on silica gel (eluent: cyclohexane/ethyl acetate) to give a near quantitative yield (3.48 g) of a brown oil. (0168) 2.2) Conversion of the Diels- Alder adducts previously obtained to 4,4'- dibromodiphenylsulfone (0169) In a Schlenk tube under argon atmosphere, potassium hydroxide, ca. 85% (0170) (35 mg, 0.53 mmol) is weighted and a solution of the previously obtained brown oil (215 mg, 0.52 mmol) in DMSO (1.5 mL) is added. The reaction mixture was stirred at 100C during 2.5 h. The reaction was monitored by NMR and GC analysis which shows the complete conversion of Diels- Alder adducts to dibromodiphenylsulfone after 1 h. (0171) Gaz chromatography titration shows that the final mixture contains 52 mg of 4,4'-dichlorodiphenylsulfone and 14 mg of 3,4'-dichlorodiphenylsulfone, giving a yield of these two products of 34% in this second step and a 4,4'- dibromodiphenylsulfone / 3,4'- dibromodiphenylsulfone ratio of 79/21.
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 22037-28-1 ]

Bromides

Chemical Structure| 21921-76-6

A113071 [21921-76-6]

4-Bromofuran-2-carbaldehyde

Similarity: 0.64

Chemical Structure| 17332-12-6

A118947 [17332-12-6]

3-Bromo-4-methoxyphenol

Similarity: 0.59

Chemical Structure| 74137-36-3

A596910 [74137-36-3]

1,3-Dibromo-5-methoxybenzene

Similarity: 0.58

Chemical Structure| 95970-22-2

A194232 [95970-22-2]

1,2-Dibromo-3-methoxybenzene

Similarity: 0.56

Chemical Structure| 7025-06-1

A194810 [7025-06-1]

1-Bromo-2-phenoxybenzene

Similarity: 0.56

Related Parent Nucleus of
[ 22037-28-1 ]

Furans

Chemical Structure| 21921-76-6

A113071 [21921-76-6]

4-Bromofuran-2-carbaldehyde

Similarity: 0.64

Chemical Structure| 3439-02-9

A175126 [3439-02-9]

4-Bromo-2-furoic acid

Similarity: 0.54

Chemical Structure| 58235-80-6

A161256 [58235-80-6]

Methyl 4-bromofuran-2-carboxylate

Similarity: 0.51

Chemical Structure| 14903-90-3

A215249 [14903-90-3]

3-Bromofuran-2-carboxylic acid

Similarity: 0.51

Chemical Structure| 957345-95-8

A140563 [957345-95-8]

4-Bromofuran-2-carboxamide

Similarity: 0.50