There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Faisal Aziz ; Kanamata Reddy ; Virneliz Fernandez Vega , et al. JMC,2024,67(3):1949-1960. DOI: 10.1021/acs.jmedchem.3c01763
More
Abstract: The suppressor of T cell receptor signaling (Sts) proteins are negative regulators of immune signaling. Genetic inactivation of these proteins leads to significant resistance to infection. From a 590,000 compound high-throughput screen, we identified the 2-(1H)-quinolinone derivative, rebamipide, as a putative inhibitor of Sts phosphatase activity. Rebamipide, and a small library of derivatives, are competitive, selective inhibitors of Sts-1 with IC50 values from low to submicromolar. SAR analysis indicates that the quinolinone, the acid, and the amide moieties are all essential for activity. A crystal structure confirmed the SAR and reveals key interactions between this class of compound and the protein. Although rebamipide has poor cell permeability, we demonstrated that a liposomal preparation can inactivate the phosphatase activity of Sts-1 in cells. These studies demonstrate that Sts-1 enzyme activity can be pharmacologically inactivated and provide foundational tools and insights for the development of immune-enhancing therapies that target the Sts proteins.
Purchased from AmBeed: 2251-65-2 ; 90098-04-7 ; 4876-14-6 ; 90098-08-1 ; 874-60-2 ; 4876-10-2 ; 7158-32-9 ; 5271-67-0 ; 118-45-6 ; 73-22-3 ; 56-41-7 ; 34893-92-0 ; 403-43-0 ; 58757-38-3 ; 76903-88-3 ; 52-90-4 ; 6068-72-0 ; 2243-83-6 ; 38818-50-7 ; 16331-45-6 ; 36823-88-8 ; 90098-06-9 ; 90098-05-8 ; 3024-72-4 ; 618-46-2 ; 63024-43-1 ; 4122-68-3 ; 22980-09-2 ; 681806-75-7 ; 39544-74-6 ...More
CAS No. : | 2251-65-2 | MDL No. : | MFCD00000680 |
Formula : | C8H4ClF3O | Boiling Point : | - |
Linear Structure Formula : | F3CC6H4C(O)Cl | InChI Key : | RUJYJCANMOTJMO-UHFFFAOYSA-N |
M.W : | 208.57 | Pubchem ID : | 75257 |
Synonyms : |
|
Signal Word: | Danger | Class: | 8 |
Precautionary Statements: | P260-P264-P280-P301+P330+P331-P303+P361+P353-P304+P340-P305+P351+P338-P310-P321-P363-P405-P501 | UN#: | 3265 |
Hazard Statements: | H314 | Packing Group: | Ⅱ |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | A 12-L 4-neck round bottom flask equipped with a thermocouple controller, mechanical stirrer, heating mantle, condenser and a nitrogen in/outlet adapter was charged with gycine (1, Alfa Aesar) (318 g; 4.19 mol), acetonitrile (1.2 L), and a solution of sodium hydroxide (5.31 L; 10.62 mo) and the mixture was cooled to 4 C. with stirring. A solution of 3-(trifluoromethyl)benzoyl chloride (2, Alfa Aesar) (885.0 g; 4.12 mol) (640 mL) in acetonitrile (0.75 L) (total 1.39 L) was added dropwise over 2 h while the internal temperature was maintained between 4-6 C., and the slightly orange-pinkish solution was stirred at 4 C. for an additional 30 min. The reaction was acidified to pH=3 with conc. 37% HCl solution (400 mL added over 30 min) at 0-6 C., and stirred for 1 h at 0 C. (until a slightly yellowish suspension resulted). The solid was collected by filtration, washed with cold (0 C.) deionized ("D.I") H2O (300 mL*2), dried under air-suction for 2 h, and then placed in a drying oven at 60 C. under house vacuum (120 mmHg) for 20 h to afford pure 3 as an off-white solid. The filtrate was extracted with EtOAc (1 L*2), and the combined organic phases washed with brine (300 mL), and concentrated at 66 C. under house vacuum and then high vacuum (20 mmHg) to give crude product as an off-white waxy solid, which was triturated and sonicated with toluene (1 L) and stirred at 10 C. for 1 h. The resulting solid was collected by filtration, washed with hexanes (50 mL*2), dried in an vacuum oven at 50 C. under house vacuum to afford additional pure title compound, 3, as an off-white solid. The structure of 3 was confirmed with its 1H-NMR. | |
91% | With hydrogenchloride; sodium hydroxide; In acetonitrile; at 0 - 3℃; for 1h;pH 2 - 3; | Manufacturing example 1: (3-trifluoromethylbenzoylamino)-acetic acid [Show Image] Glycine 0.763 g (10.16 mmol) were suspended in acetonitrile 20 ml and 2 M NaOH aqueous solution 12.7 ml (25.40 mmol, 2.5 eq.) were also added. After chilling at 0-3C, 2.12 g (10.16 mmol, 1.0 eq.) of 3- (trifluoromethyl) -benzoyl chloride were diluted with 4 ml acetonitrile and added dropwise slowly to reaction mixture. After one hour agitation at the same temperature, pH was controlled to 2 to 3 with 3N hydrochloric acid aqueous solution. After keeping upright at room temperature, upper organic solution was separated, and lower aqueous solution was extracted with ethylacetate three times. Those organic solutions obtained as described above were brought all together, dried with anhydrous magnesium sulfate and concentrated, removing the solvent under decompression. Residues were solidified with toluene, filtered, washed with normal hexane and 2.28 g (91%) target compound as white solid were yielded. 1H NMR(400MHz,DMSO-d6) 3.94(2H,d), 7.74(1H,t), 7.93(1H,d), 8.16(1H,d), 8.20(1H,s), 9.12(1H,t) |
91% | With hydrogenchloride; sodium hydroxide; In water; acetonitrile; at 0 - 3℃; for 1h;pH 2 - 3; | Manufacturing Example 1 (3-trifluoromethylbenzoylamino)-acetic acid Glycine 0.763 g (10.16 mmol) was suspended into acetonitrile 20 ml and 2M NaOH aqueous solution 12.7 ml (25.40 mmol, 2.5 eq.) was also added. After chilling at 0-3 C., 2.12 g (10.16 mmol, 1.0 eq.) of 3-(trifluoromethyl)-benzoyl chloride was diluted with 4 ml acetonitrile and was added dropwise slowly to reaction mixture. After one hour agitation at same temperature, pH was controlled to 2 to 3 with 3N hydrochloric acid aqueous solution. After keeping upright at room temperature, upper organic solution was separated, and lower aqueous solution was extracted with ethylacetate three times. Those organic solution obtained as above was brought all together, dried with anhydrous magnesium sulfate and concentrated removing its solvent under decompression. Residues was solidified with tolene, filtered, washed with normal hexane and 2.28 g (91%) target compound as white solid was yielded. 1H NMR (400 MHz, DMSO-d6) 3.94 (2H, d), 7.74 (1H, t), 7.93 (1H, d), 8.16 (1H, d), 8.20 (1H, s), 9.12 (1H, t) |
90% | (3-Trifluoromethyl-benzoylamino)acetic acid. To a rapid stirring solution of glycine (15.014 g, 0.20 mol) in MeCN (400 mL) and 2 M NaOH (250 mL) at 0 C. was slowly added a solution of 3-(trifluoromethyl)-benzoyl chloride (41.714 g, 0.20 mol) in 75 mL of MeCN over 30 min. The cloudy yellow solution was stirred at 0 C. for 30 min. The reaction mixture was acidified with 3 M HCl to pH=3, followed by removal of MeCN on rotary evaporator. The resulting mixture was then extracted with EtOAc (400 mL×3). The combined organic layers were dried, filtered and concentrated to give a light yellow solid (48.53 g), which was triturated with toluene (500 mL). After filtration, the solid product was washed with cold toluene until the filtrate was colorless. After dried under high vacuum over the weekend, a white powder product: 44.60 g (90%) was afforded. MS (M+H+)=248.1. 1H NMR (DMSO-d6) delta 12.70 (br s, 1 H), 9.17 (m, 1H), 8.20 (dd, 2H), 7.94 (dd, 1H), 7.78 (m, 1H), 3.97 (d, 2H). | |
90% | Step A(3-Trifluoromethyl-benzoylamino)acetic acid. To a rapid stirring solution of glycine (15.014 g, 0.20 mol) in MeCN (400 mL) and 2 M NaOH (250 mL) at 0 C was slowly added a solution of 3-(trifluoromethyl)-benzoyl chloride (41.714 g, 0.20 mol) in 75 mL of MeCN over 30 min. The cloudy yellow solution was stirred at 0 C for 30 min. The reaction mixture was acidified with 3 M HCI to pH = 3, followed by removal of MeCN on rotary evaporator. The resulting mixture was then extracted with EtOAc (400 mL x 3). The combined organic layers were dried, filtered and concentrated to give a light yellow solid (48.53 g), which was triturated with toluene (500 mL). After filtration, the solid product was washed with cold toluene until the filtrate was colorless. After dried under high vacuum over the weekend, a white powder product: 44.60 g (90%) was afforded. MS (M+H+) = 248.1. 1H NMR (DMSO-d6) delta 12.70 (br s, 1 H), 9.17 (m, 1 H), 8.20 (dd, 2H), 7.94 (dd, 1 H), 7.78 (m, 1 H), 3.97 (d, 2H). | |
With sodium hydroxide; | PREPARATION 1 Synthesis of N-(3-trifluoromethylbenzoyl)aminoacetic acid 5.5 of 3-trifluoromethylbenzoyl chloride were dropped slowly onto 15 ml of an aqueous solution containing 2.0 g of glycine and 2.1 g of sodium hydroxide, and then, after the dropwise addition was complete, the reaction solution was heated at 70 C. for 2 hours, with stirring. The mixture was allowed to stand to cool, and then the reaction solution was washed with ethyl acetate, the aqueous layer was neutralized with 8N hydrochloric acid, and the crystals which separated out were filtered to afford 4.6 g of the title compound, after drying. | |
With sodium hydroxide; at 20℃; for 4h; | Add 10 mL of 10% NaOH solution to a 50 mL three-necked flask, add 0.75 g of glycine to dissolve, slowly add 2.14 g of m-trifluoromethylbenzoyl chloride, stir at room temperature for 4 h, adjust the pH to 1-2 with hydrochloric acid, and precipitate a white solid. The ethyl acetate was recrystallized and purified to carry out the next condensation reaction.Take compound VII 1.0mmol, prepared carboxylic acid 1.0mmol in 20mL CH2Cl2, temperatureControl about 0 C, add 1.2 mmol EDCI, 2.0 mmol DIPEA, 1.2 mmol HOBt, then stir at room temperature overnight. The reaction solution was washed with 10 mL 5% HCl solution, 10 mL 5% NaHCO3 solution, 10 mL saturated brine. After two times, it was dried over anhydrous Na 2 SO 4 and then dried. White solid, yield 63%; |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-ethyl-N,N-diisopropylamine; In dichloromethane; at 20℃; for 0.5h; | To a solution of 4-iodo-3-methyl aniline (200 mg, 0.86 mmol) and iPr2NEt (0.19 mL, 0.95 mmol) in CH2Cl2 (10 itiL) was added 3- (trifluoromethyl)benzoyl chloride (0.133 mL, 0.90 mmol) . The mixture was allowed to stir at room temperature for 0.5 h at which time it was diluted with CH2Cl2 (20 mL) . The organic layer was washed with aq. HCl (10 mL, 1 M) , 9% aq. Na2CO3 (10 mL) , brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The resulting oil was used without further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
58% | General procedure: To a stirred solution of compound 4 (0.50 g, 3 mmol) in 15 mLdichloromethane, pyridine (0.24 mL, 3 mmol) and correspondingbenzoyl chloride (3 mmol) were added at 0 C. The reaction mixturewas stirred for 30 min, after which it was washed with10 mL 4 N aqueous HCl solution and 10 mL saturated sodium chloridesolution. The organic layer was dried with anhydrous MgSO4and concentrated. The residue was dissolved in 20 mL dioxaneand then 15 mL of a 4 N aqueous HCl solution was added at roomtemperature. The reaction mixture was stirred at 50 C for 30 minafter which it was extracted with ethyl acetate (50 mL 3). Theextract was washed with saturated sodium chloride solution anddried with anhydrous MgSO4. After concentration, column chromatographyof the residue on silica gel (eluent PE/EA 7:1) generatedcompounds 5a-o. The spectral data are summarized in theSupplementary Information. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
46% | General procedure: A mixture of dry dichloromethane (DCM, 2 mL) and dry pyridine (475 mg, 6 mmol, 3 molarequiv) was put into 25 mL round-bottom flask, closed with a stopper and cooled in a freezer forapproximately 15 min. A selected benzoyl chloride (2.4 mmol, 1.2 equiv) was diluted with dry DCM(5 mL) and added dropwise to the cooled (ice bath) pyridine/DCM mixture under stirring, and the mixture was stirred for additional 5 min in the closed flask. 2-Aminopyrazine (190 mg, 2 mmol,1 equiv) or 6-chloropyrazin-2-amine (259 mg, 2 mmol, 1 equiv) was dissolved in DCM (2 mL) andadded dropwise to the cooled reaction mixture over 10 min upon stirring. After additional 15 min,the reaction was removed from the ice bath and stirred at laboratory temperature. The progress ofreaction was monitored by TLC (silica plates, 33percent EtOAc in hexane). After 2 h, no significant furtherincrease in the spot of the product was observed, so the reaction was ended and worked-up.The reaction mixture was adsorbed on silica (4 g) by evaporating the solvents underreduced pressure. The mixture on silica was used for solid loading the flash chromatographypre-column. The separation used the following conditions: manually filled silica column (30 g),continuous gradient elution 0?50percent EtOAc in hexane, flow rate 35 mL/min, detection wavelength280 nm, monitoring wavelength 260 nm. Fractions containing pure product were combined andsolvents were evaporated under reduced pressure to yield solid product. If needed, the productswere recrystallized from hot EtOH, the crystallization was induced by cooling and addition of water.The products were isolated as white solids. In several cases, the final products were still contaminatedwith non-specified impurity of brown color. This impurity was easily removed by dispersing theproduct in small amount of hexane and immersion of a vertical piece of filtration paper into thisdispersion. The impurity was soluble in hexane and rose by capillary action to the filtration paper. |