Home Cart 0 Sign in  
X

[ CAS No. 25629-58-7 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 25629-58-7
Chemical Structure| 25629-58-7
Chemical Structure| 25629-58-7
Structure of 25629-58-7 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 25629-58-7 ]

Related Doc. of [ 25629-58-7 ]

Alternatived Products of [ 25629-58-7 ]
Product Citations

Product Details of [ 25629-58-7 ]

CAS No. :25629-58-7 MDL No. :MFCD16658894
Formula : C3H2ClNOS Boiling Point : -
Linear Structure Formula :- InChI Key :XFIPRDRBFGJGIZ-UHFFFAOYSA-N
M.W : 135.57 Pubchem ID :11018927
Synonyms :

Calculated chemistry of [ 25629-58-7 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 7
Num. arom. heavy atoms : 5
Fraction Csp3 : 0.0
Num. rotatable bonds : 0
Num. H-bond acceptors : 2.0
Num. H-bond donors : 1.0
Molar Refractivity : 29.15
TPSA : 61.36 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -5.76 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.52
Log Po/w (XLOGP3) : 1.92
Log Po/w (WLOGP) : 1.5
Log Po/w (MLOGP) : 0.07
Log Po/w (SILICOS-IT) : 2.54
Consensus Log Po/w : 1.51

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 2.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -2.42
Solubility : 0.517 mg/ml ; 0.00381 mol/l
Class : Soluble
Log S (Ali) : -2.83
Solubility : 0.2 mg/ml ; 0.00147 mol/l
Class : Soluble
Log S (SILICOS-IT) : -1.3
Solubility : 6.75 mg/ml ; 0.0498 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 2.62

Safety of [ 25629-58-7 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H302-H315-H319-H335 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 25629-58-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 25629-58-7 ]
  • Downstream synthetic route of [ 25629-58-7 ]

[ 25629-58-7 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 1002-19-3 ]
  • [ 25629-58-7 ]
  • [ 1003-07-2 ]
Reference: [1] Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1994, # 16, p. 2245 - 2252
Recommend Products
Same Skeleton Products

Technical Information

• Acid-Catalyzed α -Halogenation of Ketones • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Addition of a Hydrogen Halide to an Internal Alkyne • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols are Weakly Basic • Alcohols as Acids • Alcohols Convert Acyl Chlorides into Esters • Alcohols from Haloalkanes by Acetate Substitution-Hydrolysis • Alcohols React with PX3 • Alcoholysis of Anhydrides • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldol Addition • Alkene Hydration • Alkene Hydration • Alkyl Halide Occurrence • Alkylation of an Alkynyl Anion • An Alkane are Prepared from an Haloalkane • Appel Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Buchwald-Hartwig C-N Bond and C-O Bond Formation Reactions • Carboxylic Acids React with Alcohols to Form Esters • Chloroalkane Synthesis with SOCI2 • Chromium Reagents for Alcohol Oxidation • Chugaev Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Convert Esters into Aldehydes Using a Milder Reducing Agent • Convert Haloalkanes into Alcohols by SN2 • Corey-Kim Oxidation • Decarboxylation of 3-Ketoacids Yields Ketones • Decomposition of Lithium Aluminum Hydride by Protic Solvents • Dess-Martin Oxidation • Esters Are Reduced by LiAlH4 to Give Alcohols • Esters Hydrolyze to Carboxylic Acids and Alcohols • Ether Synthesis by Oxymercuration-Demercuration • Ethers Synthesis from Alcohols with Strong Acids • Friedel-Crafts Alkylation of Benzene with Haloalkanes • Friedel-Crafts Alkylations Using Alcohols • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • General Reactivity • Grignard Reaction • Grignard Reagents Transform Esters into Alcohols • Grignard Reagents Transform Esters into Alcohols • Haloalcohol Formation from an Alkene Through Electrophilic Addition • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogenation of Alkenes • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hiyama Cross-Coupling Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydroboration-Oxidation • Hydroboration-Oxidation • Hydrolysis of Haloalkanes • Jones Oxidation • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Kinetics of Alkyl Halides • Kumada Cross-Coupling Reaction • Martin's Sulfurane Dehydrating Reagent • Methylation of Ammonia • Mitsunobu Reaction • Moffatt Oxidation • Osmium Tetroxide Reacts with Alkenes to Give Vicinal Diols • Osmium TetroxideReacts with Alkenes to Give Vicinal Diols • Oxidation of Alcohols by DMSO • Oxymercuration-Demercuration • Preparation of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkoxides with Alkyllithium • Preparation of Amines • Primary Ether Cleavage with Strong Nucleophilic Acids • Reactions of Alcohols • Reactions of Alkyl Halides with Reducing Metals • Reactions of Amines • Reactions with Organometallic Reagents • Reduction of an Ester to an Alcohol • Reduction of Carboxylic Acids by LiAlH4 • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Ring Opening of an Oxacyclopropane by Lithium Aluminum Hydride • Ritter Reaction • Sharpless Olefin Synthesis • Stille Coupling • Substitution and Elimination Reactions of Alkyl Halides • Suzuki Coupling • Swern Oxidation • Synthesis of Alcohols from Tertiary Ethers • Synthesis of an Alkyl Sulfonate • The Nucleophilic Opening of Oxacyclopropanes • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Transesterification • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Vicinal Anti Dihydroxylation of Alkenes • Williamson Ether Syntheses
Historical Records

Related Parent Nucleus of
[ 25629-58-7 ]

Isothiazoles

Chemical Structure| 288-16-4

[ 288-16-4 ]

Isothiazole

Similarity: 0.52

; ;