Home Cart Sign in  
Chemical Structure| 307316-14-9 Chemical Structure| 307316-14-9

Structure of 307316-14-9

Chemical Structure| 307316-14-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 307316-14-9 ]

CAS No. :307316-14-9
Formula : C4H8ClNO2
M.W : 137.56
SMILES Code : O=C(O)[C@H](Cl)CCN

Safety of [ 307316-14-9 ]

Application In Synthesis of [ 307316-14-9 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 307316-14-9 ]

[ 307316-14-9 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 307316-14-9 ]
  • [ 2133-34-8 ]
YieldReaction ConditionsOperation in experiment
With magnesium hydroxide; sodium hydroxide; In water; at 90℃; for 5h; The solution was then placed in an ice bath and an aqueous sodium hydroxide solution (400 g/L) was added to the solution in order to adjust the pH of the solution to 2.0. Water was added to the solution to obtain about 130 g of solution. The resultant solution was heated to about 90C with stirring. Magnesium hydroxide (1.0 g) was added to the solution and the solution was stirred for 5 hours to produce an aqueous solution of (S)-azetidine-2-carboxylic acid. A small amount of the solution was sampled to identify the molecular structure by NMR. The analytical data was as follows: 1H-NMR (CD3OD): delta 2.15 (m,1H), 2.58 (m,1H), 3.90 (m,1H), 4.02 (q,1H), 4.60 (t,1H)
With magnesium hydroxide; sodium hydroxide; at 80℃; for 10h;pH 2.0; EXAMPLE 4 Dioxane (3 mL) was added to (S)-4-phthalimido-2-hydroxybutyric acid (1.0 g) in a nitrogen atmosphere. Thionyl chloride (2.5 g) was added to the mixture with stirring, and the mixture was stirred at 40C for one hour. Pyridine (0.06 g) was then added to the mixture and further stirred at 40C for 15 hours to produce a solution of dioxane and (R)-4-phthalimido-2-chlorobutyryl chloride. The solution was placed in an ice bath and then water (5 mL) was added with stirring. The solution was extracted with ethyl acetate at room temperature. The resultant organic solution was washed with a brine solution and was dried with mirabilite. The resultant solution containing ethyl acetate was concentrated under reduced pressure to recover (R)-4-phthalimido-2-chlorobutyric acid. Methanol (9 mL) was added to the compound. To the mixture 80% hydrazine hydrate (0.5 g) was added with stirring, and the mixture was stirred at 40C overnight. Water (6 mL) was then added to the solution with stirring and 47% sulfuric acid (3 mL) was added to the solution. The mixture was stirred at room temperature for three hours and the precipitate was filtered. The filtrate was concentrated under reduced pressure to produce an aqueous solution of (R)-4-amino-2-chlorobutyric acid. The solution was then placed in an ice bath and an aqueous sodium hydroxide solution (400 g/L) was added to the solution in order to adjust the pH of the solution to 2.0. Water was added to the solution to obtain about 30 g of solution. The resultant solution was heated to about 80C with stirring. Magnesium hydroxide (0.20 g) was added to the solution and the solution was stirred for 10 hours to produce an aqueous solution of (S)-azetidine-2-carboxylic acid. The solution was spontaneously cooled to room temperature. Sodium carbonate (0.43 g) and DIBOC (0.90 g) were added with stirring and the mixture was further stirred overnight. Hydrochloric acid (6N) was added to the solution in order to adjust the pH of the solution to 2.0. The resultant mixture was extracted with ethyl acetate three times. The resultant organic solution was washed with a saturated brine solution and dried with sodium sulfate. The solvent in the mixture was then removed to recover (S)-N-(tert-butoxycarbonyl)azetidine-2-carboxylic acid (0.32 g) (yield 41%, optical purity 87.1 %e.e.).
YieldReaction ConditionsOperation in experiment
73.2% Without particularly isolating (R)-4-amino-2-chlorobutyric acid in the reaction solution, the reaction solution was neutralized with a 30% sodium hydroxide aqueous solution until a pH of 11, 1.21 g of barium hydroxide octahydrate was added, and the solution was stirred with heating at 100C for 26 minutes. The reaction solution was adjusted to pH 1 by addition of 6 N hydrochloric acid. The reaction solution was passed several times through an ion exchange resin (Amberlite IR 120) column and, then, the ion exchange resin was washed with water until the pH of washings reached to 6 to 7. Thereafter, the ion exchange resin was washed with aqueous ammonia, and the washings were concentrated to give 70.8 mg of (S) -azetidine-2-carboxylic acid (yield 73.2%, optical purity 67.9% ee).
60.5% Without particularly isolating (R)-4-amino-2-chlorobutyric acid in the reaction solution, the solution was neutralized to pH 7 with a 30% sodium hydroxide aqueous solution, 519.4 mg of barium hydroxide octahydrate was added, and the mixture was stirred with heating at 100C for 27 minutes. 6 N hydrochloric acid was added to the reaction solution to adjust pH to 1.0. This reaction solution was passed several times through an ion exchange resin (Amberlite IR 120) column and, then, the ion exchange resin was washed with water until the pH of washings reached to 6 to 7. Thereafter, the ion exchange resin was washed with aqueous ammonia, and the washings were concentrated to give 25.2 mg of (S)-azetidine-2-carboxylic acid (yield 60.5%, optical purity 87.0% ee).
 

Historical Records