Home Cart 0 Sign in  
X

[ CAS No. 35779-35-2 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 35779-35-2
Chemical Structure| 35779-35-2
Chemical Structure| 35779-35-2
Structure of 35779-35-2 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 35779-35-2 ]

Related Doc. of [ 35779-35-2 ]

Alternatived Products of [ 35779-35-2 ]
Product Citations

Product Details of [ 35779-35-2 ]

CAS No. :35779-35-2 MDL No. :MFCD01464076
Formula : C11H8N2O Boiling Point : -
Linear Structure Formula :- InChI Key :AQLPDLOXKZRZEV-UHFFFAOYSA-N
M.W : 184.19 Pubchem ID :298471
Synonyms :

Calculated chemistry of [ 35779-35-2 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 14
Num. arom. heavy atoms : 12
Fraction Csp3 : 0.0
Num. rotatable bonds : 2
Num. H-bond acceptors : 3.0
Num. H-bond donors : 0.0
Molar Refractivity : 51.91
TPSA : 42.85 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : Yes
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.85 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.44
Log Po/w (XLOGP3) : 0.81
Log Po/w (WLOGP) : 1.71
Log Po/w (MLOGP) : 0.24
Log Po/w (SILICOS-IT) : 2.35
Consensus Log Po/w : 1.31

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -1.99
Solubility : 1.87 mg/ml ; 0.0101 mol/l
Class : Very soluble
Log S (Ali) : -1.29
Solubility : 9.41 mg/ml ; 0.0511 mol/l
Class : Very soluble
Log S (SILICOS-IT) : -4.12
Solubility : 0.014 mg/ml ; 0.0000762 mol/l
Class : Moderately soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.57

Safety of [ 35779-35-2 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P261-P305+P351+P338 UN#:N/A
Hazard Statements:H302-H315-H319-H335 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 35779-35-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 35779-35-2 ]
  • Downstream synthetic route of [ 35779-35-2 ]

[ 35779-35-2 ] Synthesis Path-Upstream   1~11

  • 1
  • [ 614-18-6 ]
  • [ 35779-35-2 ]
YieldReaction ConditionsOperation in experiment
49%
Stage #1: With n-butyllithium In diethyl ether at -78℃; for 0.25 h;
Stage #2: at -78℃; for 2 h;
n-BuLi (71.3 ml, 1.6 M, 0.114 mol) was added dropwise to the solution of 3-bromo pyridine (15 g, 0.095 mol) in dry diethyl ether (200 ml) at -78° C. and stirred for 15 minutes.
A solution of ethyl nicotinate (13 g, 0.095 mol) in dry diethyl ether (50 ml) was added dropwise to the reaction mixture at -78° C. and stirred for another 2 h at the same temperature.
Then the reaction was quenched with satd.
ammonium chloride and extracted with ethyl acetate.
The organic layer was washed with satd. brine, dried over anh. sodium sulfate and concentrated.
The crude product was purified on neutral alumina column using (methanol/dichloromethane) to give the sub-title compound (8.5 g, 49percent as brown liquid.
Reference: [1] Patent: US2008/15237, 2008, A1, . Location in patent: Page/Page column 34-35
  • 2
  • [ 89667-15-2 ]
  • [ 35779-35-2 ]
Reference: [1] Monatshefte fuer Chemie, 1988, vol. 119, p. 1427 - 1438
[2] Patent: WO2006/15159, 2006, A2, . Location in patent: Page/Page column 47
  • 3
  • [ 500-22-1 ]
  • [ 626-55-1 ]
  • [ 35779-35-2 ]
Reference: [1] ACS Catalysis, 2018, vol. 8, # 4, p. 3123 - 3128
  • 4
  • [ 59-67-6 ]
  • [ 35779-35-2 ]
Reference: [1] Journal of the American Chemical Society, 1946, vol. 68, p. 907
[2] Journal of the American Chemical Society, 1946, vol. 68, p. 907
  • 5
  • [ 626-55-1 ]
  • [ 93-60-7 ]
  • [ 109-72-8 ]
  • [ 35779-35-2 ]
Reference: [1] Journal of Molecular Structure, 2005, vol. 743, # 1-3, p. 1 - 6
  • 6
  • [ 626-55-1 ]
  • [ 93-60-7 ]
  • [ 35779-35-2 ]
Reference: [1] Heteroatom Chemistry, 2012, vol. 23, # 1, p. 66 - 73
  • 7
  • [ 500-22-1 ]
  • [ 35779-35-2 ]
Reference: [1] Monatshefte fuer Chemie, 1988, vol. 119, p. 1427 - 1438
  • 8
  • [ 60573-68-4 ]
  • [ 35779-35-2 ]
Reference: [1] Monatshefte fuer Chemie, 1988, vol. 119, p. 1427 - 1438
  • 9
  • [ 60573-68-4 ]
  • [ 100-54-9 ]
  • [ 35779-35-2 ]
Reference: [1] Recueil des Travaux Chimiques des Pays-Bas, 1951, vol. 70, p. 1054,1061
[2] Journal of Organic Chemistry, 1954, vol. 19, p. 1127,1129
  • 10
  • [ 60573-68-4 ]
  • [ 614-18-6 ]
  • [ 35779-35-2 ]
Reference: [1] Recueil des Travaux Chimiques des Pays-Bas, 1951, vol. 70, p. 1054,1061
  • 11
  • [ 60573-68-4 ]
  • [ 614-18-6 ]
  • [ 35779-35-2 ]
  • [ 108718-56-5 ]
Reference: [1] Recueil des Travaux Chimiques des Pays-Bas, 1951, vol. 70, p. 1054,1061
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Acid-Catalyzed α -Halogenation of Ketones • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkylation of Aldehydes or Ketones • Alkylation of Enolate Ions • Baeyer-Villiger Oxidation • Barbier Coupling Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Baylis-Hillman Reaction • Bucherer-Bergs Reaction • Chichibabin Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Clemmensen Reduction • Conjugated Enone Takes Part in 1,4-Additions • Corey-Bakshi-Shibata (CBS) Reduction • Corey-Chaykovsky Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Decarboxylation of 3-Ketoacids Yields Ketones • Decarboxylation of Substituted Propanedioic • Deoxygenation of the Carbonyl Group • Deprotonation of a Carbonyl Compound at the α -Carbon • Diorganocuprates Convert Acyl Chlorides into Ketones • Dithioacetal Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Enolate Ions Are Protonated to Form ketones • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Furan Hydrolyzes to Dicarbonyl Compounds • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • Grignard Reaction • Hantzsch Pyridine Synthesis • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Horner-Wadsworth-Emmons Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Isomerization of β, γ -Unsaturated Carbonyl Compounds • Ketone Synthesis from Nitriles • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Lawesson's Reagent • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • Mannich Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Mercury Ions Catalyze Alkynes to Ketones • Michael Addition • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Alkyl-substituted Benzenes Gives Aromatic Ketones • Passerini Reaction • Paternò-Büchi Reaction • Petasis Reaction • Peterson Olefination • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Amines • Prins Reaction • Pyridines React with Grignard or Organolithium Reagents • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Reactions of Aldehydes and Ketones • Reactions of Amines • Reductive Amination • Reductive Amination • Reformatsky Reaction • Robinson Annulation • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Specialized Acylation Reagents-Ketenes • Stobbe Condensation • Strecker Synthesis • Tebbe Olefination • The Acylium Ion Attack Benzene to Form Phenyl Ketones • The Claisen Rearrangement • The Reaction of Alkynyl Anions with Carbonyl Derivatives • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Wittig Reaction • Wolff-Kishner Reduction
Historical Records

Related Functional Groups of
[ 35779-35-2 ]

Ketones

Chemical Structure| 1570-48-5

[ 1570-48-5 ]

1-(Pyridin-3-yl)propan-1-one

Similarity: 0.98

Chemical Structure| 1701-70-8

[ 1701-70-8 ]

1-(Pyridin-3-yl)butan-1-one

Similarity: 0.96

Chemical Structure| 5424-19-1

[ 5424-19-1 ]

Phenyl(pyridin-3-yl)methanone

Similarity: 0.94

Chemical Structure| 350-03-8

[ 350-03-8 ]

1-(Pyridin-3-yl)ethanone

Similarity: 0.93

Chemical Structure| 51907-18-7

[ 51907-18-7 ]

5H-Cyclopenta[c]pyridin-7(6H)-one

Similarity: 0.90

Related Parent Nucleus of
[ 35779-35-2 ]

Pyridines

Chemical Structure| 1570-48-5

[ 1570-48-5 ]

1-(Pyridin-3-yl)propan-1-one

Similarity: 0.98

Chemical Structure| 1701-70-8

[ 1701-70-8 ]

1-(Pyridin-3-yl)butan-1-one

Similarity: 0.96

Chemical Structure| 5424-19-1

[ 5424-19-1 ]

Phenyl(pyridin-3-yl)methanone

Similarity: 0.94

Chemical Structure| 350-03-8

[ 350-03-8 ]

1-(Pyridin-3-yl)ethanone

Similarity: 0.93

Chemical Structure| 40061-21-0

[ 40061-21-0 ]

1-(Pyridin-3-yl)-2-(p-tolyl)ethanone

Similarity: 0.90

; ;