Structure of 3-Phenoxybenzaldehyde
CAS No.: 39515-51-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Synonyms: m-Phenoxybenzaldehyde
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 39515-51-0 |
Formula : | C13H10O2 |
M.W : | 198.22 |
SMILES Code : | C1=C(C=CC=C1OC2=CC=CC=C2)C=O |
Synonyms : |
m-Phenoxybenzaldehyde
|
MDL No. : | MFCD00003353 |
InChI Key : | MRLGCTNJRREZHZ-UHFFFAOYSA-N |
Pubchem ID : | 38284 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P301+P312-P302+P352-P304+P340-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 12 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 3 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 58.35 |
TPSA ? Topological Polar Surface Area: Calculated from |
26.3 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.23 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.38 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.29 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.61 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.22 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.95 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.59 |
Solubility | 0.0507 mg/ml ; 0.000256 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.61 |
Solubility | 0.0486 mg/ml ; 0.000245 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.61 |
Solubility | 0.00489 mg/ml ; 0.0000247 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
Yes |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.11 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.55 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In n-heptane; water; | EXAMPLE 2 Preparation of α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methyl butanoate using 3-(cyclohexylamino)-propanesulfonic acid as the rate-promoting agent A flask was charged with 3-(cyclohexylamino)propanesulfonic acid (42 mg), 3-phenoxybenzaldehyde (1.90 g, 9.6 mmole), sodium cyanide (0.56 g, 12 mmole), 1 ml water, and 15 ml n-heptane. 2-(4-Chlorophenyl)-3-methylbutanoyl chloride (2.34 g, 10.1 mmole) in 5 ml n-heptane was added dropwise over a period of 24 minutes to the stirred mixture. Thirty minutes after the addition was complete, a total of 54 minutes, glpc indicated a 95.6% yield of the desired ester. After stirring overnight, the reaction mixture was filtered and extracted with ether. The ether was evaporated from the extract, affording α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methyl butanoate (3.47 g). | |
In n-heptane; water; | EXAMPLE 2 Preparation of α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methyl butanoate using 3-(cyclohexylamino)propanesulfonic acid as the rate-promoting agent A flask was charged with 3-(cyclohexylamino)propanesulfonic acid (42 mg), 3-phenoxybenzaldehyde (1.90 g, 9.6 mmole), sodium cyanide (0.56 g, 12 mmole), 1 ml water, and 15 ml n-heptane. 2-(4-Chlorophenyl)-3-methylbutanoyl chloride (2.34 g, 10.1 mmole) in 5 ml n-heptane was added dropwise over a period of 24 minutes to the stirred mixture. Thirty minutes after the addition was complete, a total of 54 minutes, glpc indicated a 95.6% yield of the desired ester. After stirring overnight, the reaction mixture was filtered and extracted with ether. The ether was evaporated from the extract, affording α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methyl butanoate (3.47 g). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In n-heptane; water; | B. Using 2,5,8,11-tetramethyl-2,5,8,11-tetraazadodecane A flask was charged with 3-phenoxybenzaldehyde (1.98 g, 10 mmole), 20 ml n-heptane, 2,5,8,11-tetramethyl-2,5,8,11-tetraazadodecane (0.046 g), sodium cyanide (0.59 g, 12 mmole), and 1 ml. water. With stirring, 2-(4-chlorophenyl)-3-methylbutanoyl chloride (2.42 g, 10.5 mmole) was added dropwise over a period of 6 minutes. The reaction mixture was stirred at room temperature. Analysis by glpc 2.4 hr. after the acyl chloride had been added indicated a 67.7% yield of the desired ester. Stirring was continued overnight, and the desired ester (3.4 g) was isolated as described in the preceding Example. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
91% | In tetrahydrofuran; n-heptane; water; | A. Using Tetrahydrofuran To a stirred solution of sodium cyanide (0.74 g, 0.015 mole) in a 1:1 by volume mixture of water and tetrahydrofuran (20 ml) at 30 was added all at once 3-phenoxybenzaldehyde (1.98 g, 0.01 mole) in the same solvent system (5 ml), followed by the dropwise addition of 2-(4-chlorophenyl)-3-methylbutanoyl chloride (2.77 g, 0.012 mole). Stirring was continued at 30 for an additional 2 hours, after which the mixture was cooled to room temperature and extracted thrice with heptane (25 ml each). The combined organic layers were washed once with aqueous 2 N NaOH (25 ml), then four times with water (25 ml each) to a final wash pH of about 6, dried over Na2 SO4, and concentrated to give the desired product (3.90 g, 93% yield). When the experiment was repeated under substantially the same conditions the weight yield was 91%. |
With NaCN; In n-heptane; water; toluene; | EXAMPLE I. Preparation of α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methylbutanoate A 50 ml round-bottomed flask equipped with a magnetic stirrer was charged with 10 mmol of 3-phenoxybenzaldehyde, 10 mmol of 2-(4-chlorophenyl)-3-methylbutanoyl chloride, 12 mmol of sodium cyanide, 1.00 ml of water and 20 ml of n-heptane. The molar ratio of water to sodium cyanide was 4.64, all NaCN being dissolved. The reaction mixture was stirred and analyzed. The yield of the ester wanted is presented in Table I (experiment 1). Experiment 2 is a repetition of experiment 1, the difference being that 20 ml of toluene was used instead of 20 ml of n-heptane and 10.5 mmol of the acyl halide instead of 10 mmol. The yield of the desired ester is presented in Table I. Comparisons of the yields show that n-heptane is the best solvent. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
99% | In n-heptane; water; | EXAMPLE IV Preparation of α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methylbutanoate on an enlarged scale Methods A (not according to the invention), and B were compared for the preparation of the ester wanted. Method A, in the absence of a phase transfer catalyst. A 500 ml round-bottomed flask equipped with a paddle stirrer was charged with 100 mmol of 3-phenoxybenzaldehyde, 100 mmol of 2-(4-chlorophenyl)-3-methylbutanoyl chloride, 120 mmol of sodium cyanide, 10 ml of water (which dissolved all sodium cyanide) and 200 ml of n-heptane. After stirring for 45 hours the mixture was warmed to a temperature between 40 and 50 C and filtered. The filtrate was washed twice with 50 ml of a 1 M aqueous sodium bicarbonate solution, once with 50 ml of water, dried and the n-heptane was flashed from the dried solution to give the desired ester in a yield of 99% and a purity of 96%. |
With NaCN; In n-heptane; water; | EXAMPLE 6 Preparation of α-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-3-methylbutanoate on an enlarged scale A 500 ml round-bottomed flask equipped with a paddle stirrer was charged with 100 mmol of 3-phenoxybenzaldehyde, 100 mmol of 2-(4-chlorophenyl)-3-methylbutanoyl chloride, 120 mmol of sodium cyanide, 10 ml of water, and 200 ml of n-heptane. The molar ratio of water to sodium cyanide was 4.64, all NaCN being dissolved. The mixture thus formed was stirred and analyzed. Table VI presents the yields and purities of the desired ester after the reaction time indicated. The reaction mixture obtained in experiment 1 was warmed to a temperature between 40 and 50 C and filtered. The filtrate was washed twice with 50 ml of a 1 M aqueous sodium bicarbonate solution, once with 50 ml of water, dried and n-heptane was flashed from the dried solution to give the desired ester. |
A107227 [22042-73-5]
4-(2-Hydroxyethoxy)benzaldehyde
Similarity: 0.95
A204231 [66855-92-3]
3-(2-Methoxyphenoxy)benzaldehyde
Similarity: 0.93
A107227 [22042-73-5]
4-(2-Hydroxyethoxy)benzaldehyde
Similarity: 0.95
A204231 [66855-92-3]
3-(2-Methoxyphenoxy)benzaldehyde
Similarity: 0.93
A107227 [22042-73-5]
4-(2-Hydroxyethoxy)benzaldehyde
Similarity: 0.95
A204231 [66855-92-3]
3-(2-Methoxyphenoxy)benzaldehyde
Similarity: 0.93