Home Cart 0 Sign in  
X

[ CAS No. 5326-50-1 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 5326-50-1
Chemical Structure| 5326-50-1
Chemical Structure| 5326-50-1
Structure of 5326-50-1 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 5326-50-1 ]

Related Doc. of [ 5326-50-1 ]

Alternatived Products of [ 5326-50-1 ]
Product Citations

Product Details of [ 5326-50-1 ]

CAS No. :5326-50-1 MDL No. :MFCD00095227
Formula : C10H18O3 Boiling Point : -
Linear Structure Formula :- InChI Key :VEWIMVJKELSRSO-UHFFFAOYSA-N
M.W : 186.25 Pubchem ID :219250
Synonyms :

Calculated chemistry of [ 5326-50-1 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 13
Num. arom. heavy atoms : 0
Fraction Csp3 : 0.9
Num. rotatable bonds : 4
Num. H-bond acceptors : 3.0
Num. H-bond donors : 1.0
Molar Refractivity : 50.55
TPSA : 46.53 Ų

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.08 cm/s

Lipophilicity

Log Po/w (iLOGP) : 2.19
Log Po/w (XLOGP3) : 1.91
Log Po/w (WLOGP) : 1.63
Log Po/w (MLOGP) : 1.31
Log Po/w (SILICOS-IT) : 1.99
Consensus Log Po/w : 1.81

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -1.93
Solubility : 2.17 mg/ml ; 0.0116 mol/l
Class : Very soluble
Log S (Ali) : -2.51
Solubility : 0.575 mg/ml ; 0.00309 mol/l
Class : Soluble
Log S (SILICOS-IT) : -1.85
Solubility : 2.64 mg/ml ; 0.0142 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 2.21

Safety of [ 5326-50-1 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P280-P305+P351+P338 UN#:N/A
Hazard Statements:H302 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 5326-50-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 5326-50-1 ]
  • Downstream synthetic route of [ 5326-50-1 ]

[ 5326-50-1 ] Synthesis Path-Upstream   1~16

  • 1
  • [ 108-94-1 ]
  • [ 105-36-2 ]
  • [ 5326-50-1 ]
YieldReaction ConditionsOperation in experiment
94% With iodine; zinc In tetrahydrofuran for 5 h; Heating / reflux Reference Example 61; (1-Hydroxycyclohexyl) ethyl acetate; To a solution of cyclohexanone (9.52 g, 97.0 mmol), a zinc powder (7.6 g, 116.4 mmol) and a small amount of iodine in THF (100 ml) was added dropwise ethyl bromoacetate (11.8 ml, 106.7 mmol) under a nitrogen atmosphere, and the mixture was heated under reflux for 5 hrs. 10percent Sulfuric acid (100 ml) was carefully added under ice-cooling, and the mixture was extracted with ethyl acetate. The extract was washed with saturated aqueous sodium hydrogen carbonate solution, dried over anhydrous MgS04, and concentrated under reduced pressure to give the title compound (17.2 g, 94percent) as a colorless oil. 1H-NMR (CDCl3) No.: 1 . 27 (3H, t, J=7.0 Hz) , 1.35-1.71 (10H, m), 2.46 (2H, s), 3.43 (lH, s), 4.17 (2H, q, J=7.4 Hz).
Reference: [1] Tetrahedron, 1996, vol. 52, # 28, p. 9575 - 9580
[2] Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1993, # 17, p. 1963 - 1966
[3] Patent: WO2005/105802, 2005, A1, . Location in patent: Page/Page column 127
[4] Bulletin of the Chemical Society of Japan, 1980, vol. 53, # 11, p. 3301 - 3307
[5] Journal of Organic Chemistry, 2002, vol. 67, # 10, p. 3518 - 3521
[6] Journal of the Chemical Society, Chemical Communications, 1986, # 10, p. 775
[7] Journal of Chemical Research - Part S, 2003, # 6, p. 374 - 376
[8] Tetrahedron Letters, 2004, vol. 45, # 8, p. 1807 - 1809
[9] Organic Letters, 2016, vol. 18, # 14, p. 3506 - 3508
[10] Journal of Organic Chemistry, 1983, vol. 48, # 22, p. 4108 - 4111
[11] Journal of Organic Chemistry, 2004, vol. 69, # 3, p. 997 - 1000
[12] Bulletin of the Chemical Society of Japan, 1984, vol. 57, # 11, p. 3242 - 3246
[13] Journal of Heterocyclic Chemistry, 2016, vol. 53, # 5, p. 1412 - 1415
[14] Synthetic Communications, 1989, vol. 19, # 13-14, p. 2355 - 2362
[15] Tetrahedron, 1994, vol. 50, # 40, p. 11709 - 11720
[16] Journal of Chemical Research, Miniprint, 1992, p. 2213 - 2246
[17] Journal of the Chemical Society, Chemical Communications, 1992, # 13, p. 941 - 942
[18] Journal of Organic Chemistry, 1996, vol. 61, # 16, p. 5400 - 5405
[19] Organic Letters, 2000, vol. 2, # 16, p. 2549 - 2551
[20] Journal of Organometallic Chemistry, 1985, vol. 289, p. 403 - 416
[21] Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999), 1989, p. 359 - 366
[22] Journal of the Chemical Society, Chemical Communications, 1994, # 10, p. 1225 - 1226
[23] Journal of the American Chemical Society, 1945, vol. 67, p. 1432,1434
[24] Journal of the Indian Institute of Science, 1925, vol. 8, p. 96[25] Chem. Zentralbl., 1926, vol. 97, # I, p. 80
[26] Justus Liebigs Annalen der Chemie, 1905, vol. 343, p. 42[27] Chem. Zentralbl., 1905, vol. 76, # II, p. 676
[28] Justus Liebigs Annalen der Chemie, 1912, vol. 387, p. 226
[29] Journal of the American Chemical Society, 1977, vol. 99, p. 7705 - 7707
[30] Bulletin de la Societe Chimique de France, 1960, p. 1196 - 1201
[31] Journal of the American Chemical Society, 1981, vol. 103, p. 7550
[32] Journal of Organic Chemistry, 1987, vol. 52, # 21, p. 4796 - 4798
[33] Journal of the American Chemical Society, 1986, vol. 108, p. 1617
[34] Journal of Chemical Research, Miniprint, 1992, # 9, p. 2409 - 2446
[35] Journal of Organic Chemistry, 1985, vol. 50, # 3, p. 416 - 417
[36] Journal of Organic Chemistry, 1994, vol. 59, # 25, p. 7902 - 7907
[37] Patent: WO2007/25307, 2007, A2, . Location in patent: Page/Page column 300-301
[38] Synthesis (Germany), 2013, vol. 45, # 17, p. 2391 - 2396
[39] Advanced Synthesis and Catalysis, 2014, vol. 356, # 5, p. 1113 - 1118
[40] Patent: WO2008/106139, 2008, A1, . Location in patent: Page/Page column 470
  • 2
  • [ 108-94-1 ]
  • [ 105-39-5 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of Organic Chemistry, 1991, vol. 56, # 6, p. 2018 - 2024
[2] Journal of the Chemical Society, Chemical Communications, 1986, # 10, p. 775
[3] Advanced Synthesis and Catalysis, 2007, vol. 349, # 3, p. 465 - 468
[4] Tetrahedron, 1998, vol. 54, # 36, p. 10827 - 10836
[5] Journal of Chemical Research, 2004, # 6, p. 406 - 407
[6] Synthesis, 2005, # 8, p. 1297 - 1300
  • 3
  • [ 6975-17-3 ]
  • [ 5326-50-1 ]
Reference: [1] Chemistry Letters, 1988, p. 507 - 508
[2] Tetrahedron, 1997, vol. 53, # 37, p. 12469 - 12486
[3] Chemistry Letters, 1984, p. 271 - 272
[4] Journal of Organic Chemistry, 1971, vol. 36, # 2, p. 330 - 335
[5] Synthesis, 1990, # 10, p. 897 - 899
[6] Tetrahedron Letters, 1987, vol. 28, # 37, p. 4293 - 4296
[7] Tetrahedron Letters, 1987, vol. 28, # 37, p. 4293 - 4296
  • 4
  • [ 27262-60-8 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1985, p. 493 - 498
  • 5
  • [ 108-94-1 ]
  • [ 141-78-6 ]
  • [ 5326-50-1 ]
Reference: [1] Synthetic Communications, 2005, vol. 35, # 3, p. 379 - 387
[2] Journal of the American Chemical Society, 1955, vol. 77, p. 1050
[3] Tetrahedron Letters, 1976, p. 2253 - 2256
[4] Chemistry - A European Journal, 2000, vol. 6, # 19, p. 3508 - 3516
  • 6
  • [ 108-94-1 ]
  • [ 5326-50-1 ]
Reference: [1] Patent: EP1471056, 2004, A1, . Location in patent: Page 41
  • 7
  • [ 108-94-1 ]
  • [ 623-48-3 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of Organometallic Chemistry, 1989, vol. 369, p. 291 - 296
[2] Synthetic Communications, 1988, vol. 18, # 4, p. 453 - 458
  • 8
  • [ 1552-92-7 ]
  • [ 5326-50-1 ]
  • [ 62281-74-7 ]
Reference: [1] Tetrahedron Letters, 2000, vol. 41, # 50, p. 9725 - 9730
  • 9
  • [ 108-94-1 ]
  • [ 5326-50-1 ]
Reference: [1] Chemische Berichte, 1985, vol. 118, # 4, p. 1421 - 1440
  • 10
  • [ 117668-87-8 ]
  • [ 5326-50-1 ]
Reference: [1] Tetrahedron Letters, 1987, vol. 28, # 37, p. 4293 - 4296
  • 11
  • [ 6975-17-3 ]
  • [ 5326-50-1 ]
  • [ 117668-87-8 ]
Reference: [1] Tetrahedron Letters, 1987, vol. 28, # 37, p. 4293 - 4296
  • 12
  • [ 6975-17-3 ]
  • [ 23974-72-3 ]
  • [ 5326-50-1 ]
  • [ 117668-87-8 ]
Reference: [1] Tetrahedron Letters, 1987, vol. 28, # 37, p. 4293 - 4296
  • 13
  • [ 108-94-1 ]
  • [ 2678-54-8 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of Organic Chemistry, 1969, vol. 34, p. 1181 - 1187
  • 14
  • [ 64-17-5 ]
  • [ 108-94-1 ]
  • [ 64-19-7 ]
  • [ 5326-50-1 ]
Reference: [1] Israel Journal of Chemistry, 1970, vol. 8, p. 731 - 736
  • 15
  • [ 123-19-3 ]
  • [ 56579-97-6 ]
  • [ 108-94-1 ]
  • [ 10297-62-8 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of the Chemical Society, Chemical Communications, 1983, # 8, p. 406 - 408
  • 16
  • [ 123-19-3 ]
  • [ 108-94-1 ]
  • [ 10297-62-8 ]
  • [ 5326-50-1 ]
Reference: [1] Journal of the Chemical Society, Chemical Communications, 1983, # 8, p. 406 - 408
Recommend Products
Same Skeleton Products

Technical Information

• Acyl Group Substitution • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Alcohols are Weakly Basic • Alcohols as Acids • Alcohols Convert Acyl Chlorides into Esters • Alcohols from Haloalkanes by Acetate Substitution-Hydrolysis • Alcohols React with PX3 • Alcoholysis of Anhydrides • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldol Addition • Alkene Hydration • Alkene Hydration • Amines Convert Esters into Amides • Appel Reaction • Base-Catalyzed Hydration of α,β -Unsaturated Aldehydes and Ketones • Bouveault-Blanc Reduction • Buchwald-Hartwig C-N Bond and C-O Bond Formation Reactions • Carboxylic Acids React with Alcohols to Form Esters • Catalytic Hydrogenation • Chloroalkane Synthesis with SOCI2 • Chromium Reagents for Alcohol Oxidation • Chugaev Reaction • Claisen Condensations Produce β-Dicarbonyl Compounds • Claisen Condensations Produce β-Dicarbonyl Compounds • Complex Metal Hydride Reductions • Convert Esters into Aldehydes Using a Milder Reducing Agent • Convert Haloalkanes into Alcohols by SN2 • Corey-Kim Oxidation • Decarboxylation of 3-Ketoacids Yields Ketones • Decomposition of Lithium Aluminum Hydride by Protic Solvents • Deprotection of Cbz-Amino Acids • Dess-Martin Oxidation • Ester Cleavage • Ester Hydrolysis • Esters Are Reduced by LiAlH4 to Give Alcohols • Esters Hydrolyze to Carboxylic Acids and Alcohols • Ether Synthesis by Oxymercuration-Demercuration • Ethers Synthesis from Alcohols with Strong Acids • Friedel-Crafts Alkylations Using Alcohols • Geminal Diols and Acetals Can Be Hydrolyzed to Carbonyl Compounds • Grignard Reagents Transform Esters into Alcohols • Grignard Reagents Transform Esters into Alcohols • Haloalcohol Formation from an Alkene Through Electrophilic Addition • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogen and Alcohols Add to Alkenes by Electrophilic Attack • Halogenation • Hantzsch Pyridine Synthesis • Heat of Combustion • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydroboration-Oxidation • Hydroboration-Oxidation • Hydrolysis of Haloalkanes • Jones Oxidation • Ketones Undergo Mixed Claisen Reactions to Form β-Dicarbonyl Compounds • Martin's Sulfurane Dehydrating Reagent • Mitsunobu Reaction • Moffatt Oxidation • Osmium Tetroxide Reacts with Alkenes to Give Vicinal Diols • Osmium TetroxideReacts with Alkenes to Give Vicinal Diols • Oxidation of Alcohols by DMSO • Oxymercuration-Demercuration • Preparation of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkenes by Dehydration of Alcohols • Preparation of Alkoxides with Alkyllithium • Preparation of Amines • Primary Ether Cleavage with Strong Nucleophilic Acids • Reactions of Alcohols • Reactions of Amines • Reactions with Organometallic Reagents • Reduction of an Ester to an Alcohol • Reduction of an Ester to an Aldehyde • Reduction of Carboxylic Acids by LiAlH4 • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Reduction of Carboxylic Acids by Lithium Aluminum Hydride • Ring Opening of an Oxacyclopropane by Lithium Aluminum Hydride • Ritter Reaction • Sharpless Olefin Synthesis • Specialized Acylation Reagents-Carbodiimides and Related Reagents • Swern Oxidation • Synthesis of Alcohols from Tertiary Ethers • Synthesis of an Alkyl Sulfonate • The Cycloaddition of Dienes to Alkenes Gives Cyclohexenes • The Nucleophilic Opening of Oxacyclopropanes • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Transesterification • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Vicinal Anti Dihydroxylation of Alkenes • Williamson Ether Syntheses
Historical Records

Related Functional Groups of
[ 5326-50-1 ]

Aliphatic Cyclic Hydrocarbons

Chemical Structure| 3444-72-2

[ 3444-72-2 ]

Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6125-55-9

[ 6125-55-9 ]

trans-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6149-52-6

[ 6149-52-6 ]

cis-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 3618-04-0

[ 3618-04-0 ]

trans-Ethyl 4-hydroxycyclohexanecarboxylate

Similarity: 0.85

Chemical Structure| 17159-80-7

[ 17159-80-7 ]

Ethyl 4-hydroxycyclohexanecarboxylate

Similarity: 0.85

Alcohols

Chemical Structure| 18267-36-2

[ 18267-36-2 ]

Ethyl 3-hydroxy-3-methylbutanoate

Similarity: 0.94

Chemical Structure| 3444-72-2

[ 3444-72-2 ]

Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6125-55-9

[ 6125-55-9 ]

trans-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6149-52-6

[ 6149-52-6 ]

cis-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 82578-45-8

[ 82578-45-8 ]

(S)-tert-Butyl 3-hydroxybutanoate

Similarity: 0.88

Esters

Chemical Structure| 18267-36-2

[ 18267-36-2 ]

Ethyl 3-hydroxy-3-methylbutanoate

Similarity: 0.94

Chemical Structure| 3444-72-2

[ 3444-72-2 ]

Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6125-55-9

[ 6125-55-9 ]

trans-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 6149-52-6

[ 6149-52-6 ]

cis-Ethyl 2-hydroxycyclohexanecarboxylate

Similarity: 0.91

Chemical Structure| 82578-45-8

[ 82578-45-8 ]

(S)-tert-Butyl 3-hydroxybutanoate

Similarity: 0.88

; ;