Structure of 55984-93-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 55984-93-5 |
Formula : | C9H6N2 |
M.W : | 142.16 |
SMILES Code : | N#CC1=CC=C(C#N)C=C1C |
MDL No. : | MFCD00119249 |
InChI Key : | UJXAVMZSVIODSH-UHFFFAOYSA-N |
Pubchem ID : | 10419286 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.11 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 40.84 |
TPSA ? Topological Polar Surface Area: Calculated from |
47.58 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.72 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.72 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.74 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.08 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.24 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.7 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.21 |
Solubility | 0.879 mg/ml ; 0.00619 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.34 |
Solubility | 0.657 mg/ml ; 0.00462 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.93 |
Solubility | 0.167 mg/ml ; 0.00117 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
Yes |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.95 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.34 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
58% | 2) The <strong>[55984-93-5]2-<strong>[55984-93-5]methylterephthalonitrile</strong></strong> thus obtained is then added to 70 ml of 95percent H2SO4, the mixture is maintained at 100° C. overnight, and after stopping the heating, 35 ml of H2O are added thereto and, once at room temperature, 6.6 g of NaNO2 dissolved in 30 ml of H2O are added. The whole is maintained at 110° C. overnight. Finally, after adding 200 ml of H2O with stirring, filtering through a Buechner funnel, washing with water and drying under vacuum at 50° C. overnight, 2.13 g of 2-methylterephthalic acid are obtained in the form of a whitish powder (Yield of 58percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | In N,N-dimethyl-formamide; at 75℃; for 72h;Inert atmosphere; | Methylterephthalonitrile (1.42g, 9.99mmol) and Bredereck's reagent (3.48g, 19.98mmol) were dissolved in DMF (15mL). The reaction mixture was heated at 75°C under nitrogen for 72hrs after which time the solvent was removed in vacuo. Trituration with Pet. Ether gave a bright yellow solid identified as 2-((E)- 2-dimethylamino-vinyl)-terephthalonitrile ester (1.88g, 0.95mmol, 95percent yield). XH NM (CD3OD) delta: 3.20 (6H, s), 5.34 (1H, d, J = 13.4Hz), 7.21 (1H, dd, J = 8.0Hz, 1.4Hz), 7.9 (1H, d, 13.4Hz), 7.61 (1H, d, J = 8.0Hz), 7.94 (1H, d, J =1.2Hz) |
95% | In N,N-dimethyl-formamide; at 75℃; for 72h;Inert atmosphere; | Example 10A. 2-((E)-2-Dimethylamino-vinyl)-terephthalonitrile esterMethylterephthalonitrile (1.42g, 9.99mmol) and Bredereck's reagent (3.48g, 19.98mmol) were dissolved in DMF (15mL). The reaction mixture was heated at 75°C under nitrogen for 72hrs after which time the solvent was removed in vacuo. Trituration with Pet Ether gave a bright yellow solid identified as 2-((E)-2- dimethylamino-vinyl)-terephthalonitrile ester (1.88g, 0.95mmol, 95percent). H NMR (CD3OD) delta: 3.20 (6H, s), 5.34 (1H, d, J = 13.4Hz), 7.21 (1H, dd, J = 8.0Hz, 1.4Hz), 7.9 (1H, d, 13.4Hz), 7.61 (1H, d, J = 8.0Hz), 7.94 (1H, d, J =1.2Hz) |
95% | In N,N-dimethyl-formamide; at 75℃;Inert atmosphere; | Into a 250-mL round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-methylbenzene-l,4-dicarbonitrile (4 g, 28.14 mmol, 1.00 equiv), [(tert-butoxy)(dimethylamino)methyl]dimethylamine (9.8 g, 56.23 mmol, 2.00 equiv) in N,N-dimethylformamide (50 mL). The resulting solution was stirred overnight at 75 °C, and then concentrated under vacuum. The resulting mixture was washed with 50 mL of hexane. The solids were collected by filtration. This provided 5.3 g (95percent) of 2-[(E)-2- (dimethylamino)ethenyl]benzene-l,4-dicarbonitrile as a yellow solid. |
95% | In N,N-dimethyl-formamide; at 75℃;Inert atmosphere; | Step 2. 2-[(E)-2-(dimethylamino)ethenyl]benzene-1,4-dicarbonitrileInto a 250-mL round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of <strong>[55984-93-5]2-methylbenzene-1,4-dicarbonitrile</strong> (4 g, 28.14 mmol, 1.00 equiv), [(tert-butoxy)(dimethylamino)methyl]dimethylamine (9.8 g, 56.23 mmol, 2.00 equiv) in N,N-dimethylformamide (50 mL). The resulting solution was stirred overnight at 75° C., and then it was concentrated under vacuum. The resulting mixture was washed with 50 mL of hexane. The solids were collected by filtration. This provided 5.3 g (95percent) of 2-[(E)-2-(dimethylamino)ethenyl]benzene-1,4-dicarbonitrile as a yellow solid. |
95% | In N,N-dimethyl-formamide; at 75℃; for 72h;Inert atmosphere; | Al. 2-({E)-2-Dimethylamino-vinYl)-terephthalonitrie ester Methylterephthalonitrile (1.42g, 9.99mmol) and Bredereck's reagent (3.48g, 19.98mmol) were dissolved in DMF (15mL). The reaction mixture was heated at 75 *C under nitrogen for 72hrs after which time the solvent was removed in vacuo. Trituration with Pet. Ether gave a bright yellow solid identified as 2-((E)- 2-dimethylamino-vinyl)-terephthalonitrile ester (1.88g, 0.95mmol, 95percent yield). 3H NMR (CD3OD) delta: 3.20 (6H, s), 5.34 (1H, d, J = 13.4Hz), 7.21 (1H, dd, J = 8.0Hz, 1.4Hz), 7.9 (1H, d, 13.4Hz), 7.61 (1H, d, J = 8.0Hz), 7.94 (1H, d, J =1.2Hz) |
In 1,2-dimethoxyethane; at 75℃; for 12h; | Methylterephthalonitrile (1.42 g, 1.0 mmol) and t-butoxybis(dimethylamine)methane (3.5 g, 2.0 mmol) were heated with 15 mL of DML at 75 °C for 12 h under N2. The DMF was removed and hexane was added. The precipitate formed was filtered and dried to give 1.85 g of the desired product. MS: 504.4, (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
67% | In 1-methyl-pyrrolidin-2-one; at 200℃; for 24h; | 1) 10 g of CuCN (111.6 mmol) and 4.2 ml of 2,5-dichlorotoluene (30.5 mmol) in 26 ml of N-methylpyrrolidinone are placed in a round-bottomed flask. The mixture is refluxed (200° C.) for 24 hours so as to substitute the Cl atoms with nitrile groups.After stopping the heating, 50 ml of aqueous 20percent NH4OH solution and 35 ml of toluene are added to the reaction medium. The mixture is stirred, and once it has cooled to room temperature, 100 ml of ether and 50 ml of 20percent NH4OH solution are added thereto. The two phases thus obtained are separated by successive additions of ether (250 ml) and finally centrifuged (difficult separation). The organic phase is then washed successively with 10percent NH4OH solution (4.x.50 ml, until the basic aqueous phase no longer has a blue coloration), then with H2O and finally with 10percent HCl solution and with saturated NaCl solution. After drying over MgSO4, filtering through paper and evaporating off the solvent, 2.9 g of a yellow product are obtained (Yield of 67percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
45% | In N,N-dimethyl-formamide; for 6h;Inert atmosphere; Reflux; | Into a 500-mL round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of l,4-dibromo-2-methyl benzene (15 g, 60.02 mmol, 1.00 equiv) in N,N-dimethylformamide (200 mL). CuCN (20.4 g, 227.77 mmol, 3.80 equiv) was added to the reaction. The resulting solution was heated to reflux for 6 h, and then diluted with 200 mL of ammonia. The solids were filtered. The filtrate was extracted with 2x200 mL of ethyl acetate. The combined organic layers were washed with 2x200 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (50/1-30/1) as eluent to provide 3.8 g (45percent) of 2-methylbenzene-l,4- dicarbonitrile as a light yellow solid. |
45% | In N,N-dimethyl-formamide; for 6h;Inert atmosphere; Reflux; | STEP 1: 2-METHYLBENZENE-1,4-DICARBONITRILEInto a 500-ml round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1,4-dibromo-2-methylbenzene (15 g, 60.02 mmol, 1.00 equiv) in n,n-dimethylformamide (200 ml). Cucn (20.4 g, 227.77 mmol, 3.80 equiv) was added to the reaction. The resulting solution was heated to reflux for 6 h, and then it was diluted with 200 ml of ammonia. The solids were filtered out. The resulting solution was extracted with 2×200 ml of ethyl acetate. The combined organic layers were washed with 2×200 ml of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (50/1-30/1) as eluent to provide 3.8 g (45percent) of 2-methylbenzene-1,4-dicarbonitrile as a light yellow solid. |
A829089 [712-74-3]
Benzene-1,2,4,5-tetracarbonitrile
Similarity: 1.00
A829089 [712-74-3]
Benzene-1,2,4,5-tetracarbonitrile
Similarity: 1.00