Home Cart Sign in  
Chemical Structure| 56-37-1 Chemical Structure| 56-37-1

Structure of 56-37-1

Chemical Structure| 56-37-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Chrzan, Julia ; Drabczyk, Anna Karolina ; Siemińska, Izabela ; Baj-Krzyworzeka, Monika ; Greber, Katarzyna Ewa ; Jaśkowska, Jolanta , et al.

Abstract: Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized using 4-chloro-N-(2-chlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazin-2-amine as the key intermediate, with sodium carbonate, TBAB, and DMF providing optimal yields under microwave conditions. To enhance sustainability, a modified sonochemical method was also developed, enabling efficient synthesis in aqueous media with a minimal use of organic solvents. A series of nine morpholine-functionalized derivatives were synthesized and evaluated for cytotoxic activity against SW480 and SW620 colorectal cancer cell lines. Compound 11 demonstrated superior antiproliferative activity (IC50 = 5.85 µM) compared to the reference drug 5-fluorouracil, while compound 5 showed promising dual-line activity. In silico ADME analysis supported the drug likeness of the synthesized compounds, and biomimetic chromatography analysis confirmed favorable physicochemical properties, including lipophilicity and membrane affinity. These results underscore the potential of the developed protocol to produce bioactive triazine derivatives through an efficient, scalable, and environmentally friendly process, offering a valuable strategy for future anticancer drug development.

Keywords: 1,3,5-triazine ; green chemistry ; microwave-assisted synthesis ; sonochemistry ; colorectal cancer ; anticancer agents ; phase-transfer catalysis ; cytotoxicity ; ADME ; drug likeness

Purchased from AmBeed: ; ;

Alternative Products

Product Details of [ 56-37-1 ]

CAS No. :56-37-1
Formula : C13H22ClN
M.W : 227.77
SMILES Code : CC[N+](CC)(CC1=CC=CC=C1)CC.[Cl-]
MDL No. :MFCD00011824
InChI Key :HTZCNXWZYVXIMZ-UHFFFAOYSA-M
Pubchem ID :66133

Safety of [ 56-37-1 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 56-37-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 15
Num. arom. heavy atoms 6
Fraction Csp3 0.54
Num. rotatable bonds 5
Num. H-bond acceptors 0.0
Num. H-bond donors 0.0
Molar Refractivity 68.48
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

0.0 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

-1.5
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-1.07
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-0.08
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

-0.08
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.87
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.02

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-0.54
Solubility 65.1 mg/ml ; 0.286 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

1.56
Solubility 8250.0 mg/ml ; 36.2 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-5.24
Solubility 0.00132 mg/ml ; 0.00000581 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-8.45 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.04

Application In Synthesis of [ 56-37-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 56-37-1 ]

[ 56-37-1 ] Synthesis Path-Downstream   1~6

  • 1
  • [ 82104-74-3 ]
  • [ 56-37-1 ]
  • 2-chloromethyl-4-cyano-benzoyl chloride [ No CAS ]
YieldReaction ConditionsOperation in experiment
With trifluoroborane diethyl ether; In thionyl chloride; Example 1 2-Chloromethyl-4-cyano-benzoyl chloride 1-Oxo-1,3-dihydro-isobenzofuran-5-carbonitrile (25 g), boron trifluoride etherate (0.8ml), and benzyl triethyl ammonium chloride (0.72 g) were suspended in thionyl chloride (92 ml) and heated to reflux for 17 hours. Excess thionyl chloride was removed by distillation under nitrogen to give an internal temperature of 95° C., and heating to reflux was continued for another 24 hours. The product was purified by distillation under reduced pressure. Yield: 27.5 g, 92percent. Melting point 44 -44.5 C. 1H NMR (CDCl3, 400 MHz): 4.83 (2H, s), 7.74 (1H, dd, J=1, 8 Hz), 7.89 (1H, d, J=1 Hz), 8.25 (1H, d, J=8 Hz). 13C NMR (CDCl3, 100 MHz): 42.7, 116.8, 118.0, 132.2, 133.8, 134.0, 135.7, 140.0, 166.9. IR (KBr): v 3108, 3077, 2963, 2239, 1755, 1604, 1298, 1195, 1103, 944, 935, 840 cm-1.
With thionyl chloride; trifluoroborane diethyl ether; In 5,5-dimethyl-1,3-cyclohexadiene; Example 2 2-Chloromethyl-4-cyano-benzoyl chloride 1-Oxo-1,3-dihydro-isobenzofuran-5-carbonitrile (80 g), boron trifluoride etherate (4,4 ml), benzyltriethyl ammonium chloride (9,2 g), and thionyl chloride (55 ml) were suspended in xylene (320 ml). The mixture was heated to reflux for 4 hours and volatiles were removed under reduced pressure. The product was purified by distillation under high vacuum. Yield: 78,2 g, 73percent. Melting point 44 -44.5° C. 1H NMR (CDCl3, 400 MHz): 4.83 (2H, s), 7.74 1H, dd, J=1, 8 Hz), 7.89 1H, d, J=1 Hz), 8.25 1H, d, J=8 Hz). 13C NMR (CDCl3, 100 MHz): 42.7, 116.8, 118.0, 132.2, 133.8, 134.0, 135.7, 140.0, 166.9. IR (KBr): v 3108, 3077, 2963, 2239, 1755, 1604, 1298, 1195, 1103, 944, 935, 840 cm-1.
  • 2
  • [ 89282-12-2 ]
  • [ 56-37-1 ]
  • [ 165547-79-5 ]
YieldReaction ConditionsOperation in experiment
With trichlorophosphate; In acetonitrile; Step A: 4-Chloro-2-hydroxy-3-nitropyridine Phosphorous oxychloride (63.4 mL, 0.68 mol) was added dropwise to a stirred mixture of 2,4-dihydroxy-3-nitropyridine (28.92 g, 0.17 mol) and benzyl triethylammonium chloride (155 g, 0.68 mol) in acetonitrile (560 mL). The reaction mixture was warmed to 60 C. for 1 h then was heated to reflux for 1 h. The reaction was cooled and the volatiles were evaporated in vacuo. An ice/water slurry (500 mL) was added to the residual oil and the mixture was stirred for 3 h at 0 C. The solids were collected by filtration, washing with water and hexanes to give the title compound as a solid; NMR (CD3 OD); d 2.33 (s, 3H), 6.39 (s, 1H).
  • 3
  • [ 56-37-1 ]
  • [ 85290-78-4 ]
  • diethyl 1,1'-methylenebis(5-methyl-pyrazole-4-carboxylate) [ No CAS ]
  • 4
  • [ 56-37-1 ]
  • [ 85290-78-4 ]
  • diethyl 1,2'-methylenebis(3-methyl-pyrazole-4-carboxylate) [ No CAS ]
  • 5
  • [ 56-37-1 ]
  • [ 85290-78-4 ]
  • diethyl 1,1'-methylenebis(3-methyl-pyrazole-4-carboxylate) [ No CAS ]
  • 6
  • [ 1075-35-0 ]
  • [ 56-37-1 ]
  • 3,6-dichloro-2-methylquinoline [ No CAS ]
YieldReaction ConditionsOperation in experiment
With sodium hydroxide; In chloroform; water; at 0 - 20℃; for 17h; To a solution of <strong>[1075-35-0]5-chloro-2-methyl-1H-indole</strong> (5.00 g, 30.3 mmol) and TEBAC (0.60 g, 0.300 mmol) in CHCl3 (150 ml) was added, at 0 C., NaOH in water. The mixture was stirred at 0 C. for 3 h and then at RT for 14 h. The reaction mixture was then added gradually to ice-water and extracted with chloroform. The organic phase was washed with water, dried over Na2SO4 and concentrated on a rotary evaporator. The residue was purified by column chromatography purification with a hexane/ethyl acetate gradient as eluent. MH+: 212; 1H-NMR (400 MHz, CDCl3): δ 2.78 (s, 3H), 7.58-7.61 (dd, J=2.32 & 9.0 Hz, 1H), 7.68-7.69 (d, J=2.28 Hz, 1H), 7.91-7.94 (d, J=9.0 Hz, 1H), 8.01 (s, 1H).
 

Historical Records