Home Cart Sign in  
Chemical Structure| 59769-37-8 Chemical Structure| 59769-37-8

Structure of 59769-37-8

Chemical Structure| 59769-37-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 59769-37-8 ]

CAS No. :59769-37-8
Formula : C12H17FO3
M.W : 228.26
SMILES Code : FC1=CC=C(OCC(OCC)OCC)C=C1
MDL No. :MFCD18848554

Safety of [ 59769-37-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P264-P270-P271-P280-P301+P312-P302+P352-P304+P340-P305+P351+P338-P330-P332+P313-P337+P313-P362-P403+P233-P405-P501

Application In Synthesis of [ 59769-37-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 59769-37-8 ]

[ 59769-37-8 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 59769-37-8 ]
  • [ 24410-59-1 ]
YieldReaction ConditionsOperation in experiment
67% With tin-exchanged H-b zeolite (Sn-b); for 1.5h;Reflux; General procedure: A 25 mL round-bottomed flask was charged with 2-aryloxyacetaldehyde diethyl acetals (1 mmol), Sn-b (0.1 g), andtrifluorotoluene (10 mL). The mixture was stirred under refluxingcondition and monitored by GC. Upon completion, the mixture wascooled to room temperature, and the catalyst Sn-b was filtrate off.The filter cake was washed with trifluorotoluene (10 mL3). Thecombined filtratewas concentrated under vacuum. The residuewaspurified by flash column chromatography on SiO2 (petroleumether/ethyl acetate) to afford the desired 2,3-unsubstituted benzo[b]furans.
45% With PPA; In benzene; for 2.5h;Heating / reflux; To a mixture of benzene (200 ml) containing polyphosphoric acid (7.9 g, 0.035 mol) was added 2-(4-fluoro-phenoxy)-acetaldehyde diethyl acetal (8 g, 0.035 mol). The mixture was stirred vigorously while being heated to reflux for 2.5 hours. The reaction mixture was cooled to room temperature and decanted from the polyphosphoric acid. The solvent was removed under vacuum. Chromatography (5% ethyl acetate-hexanes) afforded 3.4 g (45%) of product as a clear oil: 1H NMR (CDCl3) delta 6.74 (dd, 1H, J = 2.0, 0.6 Hz), 7.01 (td, 1H, J = 9, 2.7 Hz), 7.25 (dd, 1H, J = 8.4, 2.7 Hz), 7.43 ( dd, 1H, J = 9, 3.9 Hz), 7.65 (d, 1H, J = 1.8 Hz).
With amberlyst 15; In hexane; at 20 - 200℃; for 11h; To a solution of 16.0 g of 1-(2,2-diethoxyethoxy)-4-fluorobenzene in 50 ml n-hexane was added 3.2 g of amberlyst 15 at room temperature. After the mixture was treated in a sealed tube at 200C for 11 hours, the amberlyst 15 was filtered off. The solvent was evaporated, and the crude product was purified and separated by silica gel column chromatography (n-hexane), to give 4.8 g of the title compound as a colorless oil.1H-NMR (400 MHz, CDCl3) d 6.74 (1H, dd, J = 1.2, 2.4 Hz), 7.02 (1H, dt, J = 2.4, 8.8 Hz), 7.25 (1H, dd, J = 2.4, 8.8 Hz), 7.41 - 7.44 (1H, m), 7.65 (1H, d, J = 2.4 Hz).
Amberlyst 15; In toluene; at 120℃;Reflux; EXAMPLE 6Preparation of 5-substituted benzofuranThe l-substituted-4-(2,2-diethoxyethoxy)benzene (100 mmol) was refluxed in dry toluene (30 ml) with Amberlyst 15 (2.5 g) at 120C for 6-8 h with concomitant removal of the azeotrope using a Dean-Stark apparatus. The resulting reaction mixture was filtered and the resin was washed with an excess of toluene. The combined filtrates were concentrated to dryness under reduced pressure and the resulting compounds were purified by crystallization, by distillation or by silica gel column chromatography. The following 5-substituted benzofurans were prepared by described above method: 5-Fluorobenzofuran, oil
With polyphosphoric acid; In benzene; for 2.5h;Reflux; Step 2. 5-Fluorobenzofuran To a mixture of benzene (200 mL) containing polyphosphoric acid (80 g, 236.69 mmol) was added 2-(4-fluoro-phenoxy)-acetaldehyde diethyl acetal (45 g, 197.37 mmol). The mixture was stirred vigorously while being heated to reflux for 2.5 hours. The reaction mixture was cooled to room temperature and decanted from the polyphosphoric acid. The solvent was removed under vacuum to give the residue, which was purified by a silica gel column (1% ethyl acetate in petroleum ether) to afford 5-fluorobenzofuran as colorless oil (14.0 g, crude).1H-NMR (300 MHz, CDCl3): delta 7.67 (d, J=2.1 Hz, 1H), 7.44-7.48 (m, 1H), 7.27-7.30 (m, 1H), 7.01-7.08 (m, 1H), 6.76-6.77 (m, 1H)
With polyphosphoric acid; In benzene; for 2.5h;Reflux; Step 2. 5-FluorobenzofuranTo a mixture of benzene (200 mL) containing polyphosphoric acid (80 g, 236.69 mmol) was added 2-(4-fluoro-phenoxy)-acetaldehyde diethyl acetal (45 g, 197.37 mmol). The mixture was stirred vigorously while being heated to reflux for 2.5 hours. The reaction mixture was cooled to room temperature and decanted from the polyphosphoric acid. The solvent was removed under vacuum to give the residue, which was purified by a silica gel column with 1% ethyl acetate in petroleum ether to afford 5-fluorobenzofuran as colorless oil (14.0 g, crude). 'H-NMR (300 MHz, CDCI3): delta 7.67 (d, / = 2.1 Hz, 1H), 7.44 - 7.48 (m, 1H), 7.27 - 7.30 (m, 1H), 7.01- 7.08 (m, 1H), 6.76 - 6.77 (m, 1H)

 

Historical Records

Technical Information

Categories