Structure of 6647-97-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 6647-97-8 |
Formula : | C5H7IN2 |
M.W : | 222.03 |
SMILES Code : | CC1=NN(C)C=C1I |
MDL No. : | MFCD15146433 |
InChI Key : | LBTIQTFUCOVWKY-UHFFFAOYSA-N |
Pubchem ID : | 12383784 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302 |
Precautionary Statements: | P280-P305+P351+P338 |
Num. heavy atoms | 8 |
Num. arom. heavy atoms | 5 |
Fraction Csp3 | 0.4 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 41.17 |
TPSA ? Topological Polar Surface Area: Calculated from |
17.82 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.82 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.28 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.33 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.34 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.77 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.51 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.49 |
Solubility | 0.726 mg/ml ; 0.00327 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.25 |
Solubility | 12.4 mg/ml ; 0.0558 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.14 |
Solubility | 1.6 mg/ml ; 0.00721 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.75 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.62 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
68% | With nitric acid; In tetrahydrofuran; water; at 20℃; for 3h; | General procedure: To iodopyrazole (1 mmol) dissolved in THF (10 mL), Fuajasite (250 mg) was added. Nitric acid (d 1.52 g/cm3, 10 mL) was added slowly and the mixture was stirred at room temperature for required time. The catalyst was recovered by filtration and the filtrate was extracted repeatedly with dichloromethane. The solvent was removed under vacuum to obtain nitropyrazole. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87% | With dihydrogen peroxide; iodine; In water; at 20℃; for 20h; | Iodine (66 g, 260 mmol) and hydrogen peroxide (30% in water, 35.4 g, 312 mmol) were added to a solution of 1,3-dimethyl-1H-pyrazole (50 g, 520 mmol) in water (500 mL), and the reaction mixture was stirred at 20 C. for 20 hours. Saturated aqueous sodium sulfite solution (100 mL) was then added, and the resulting suspension was extracted with ethyl acetate (2*300 mL). The combined organic layers were washed with saturated aqueous sodium chloride solution (400 mL), dried over sodium sulfate, filtered, and concentrated in vacuo to provide the product as a yellow oil. Yield: 100 g, 450 mmol, 87%. 1H NMR (400 MHz, CDCl3) delta 7.32 (s, 1H), 3.85 (s, 3H), 2.24 (s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
46% | With tetrakis(triphenylphosphine) palladium(0); sodium carbonate; In 1,2-dimethoxyethane; water; at 150℃; for 1h;Microwave irradiation; | Prepared using method C (Preparation 85) in DME/water 3/1 for 1 hour at 150 C. under microwave irradiation. Purified using silica gel column chromatography eluting with 5% (7M ammonia in methanol) in ethyl acetate to afford the title compound as a purple powder (40 mg, 46%). 1H NMR (500 MHz, CDCl3) delta 2.38 (s, 3H), 3.84 (s, br, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 6.74 (d, J=7.9 Hz, 1H), 6.83 (m, 2H), 7.71 (s, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
54% | A solution of n-butyllithium in hexanes (2.5 M, 0.92 mL, 2.3 mmol) was added to a -78 C. solution of C1 (510 mg, 2.30 mmol) and C32 (485 mg, 2.39 mmol) in tetrahydrofuran (20 mL), and stirring was continued at -78 C. for 30 minutes. Acetic acid (670 muL) was added at -78 C., and stirring was allowed to proceed for an additional 30 minutes at that temperature, at which point the cooling bath was removed. Water (10 mL) was added to the reaction mixture, which was then extracted with ethyl acetate (3*100 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated in vacuo. After purification via silica gel chromatography (Gradient: 30% to 75% ethyl acetate in heptane), the product was isolated as a gum. Yield: 370 mg, 1.24 mmol, 54%. GCMS m/z 299.1 [M+]. 1H NMR (500 MHz, CDCl3) delta 8.03 (d, J=3.4 Hz, 1H), 5.12 (ddd, J=49.9, 8.0, 4.2 Hz, 1H), 4.75-4.67 (br s, 1H), 3.86 (s, 3H), 3.38-3.29 (m, 2H), 2.48 (s, 3H), 2.24-2.05 (m, 2H), 1.42 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
63% | A solution of isopropylmagnesium chloride in tetrahydrofuran (2 M, 29.7 mL, 59.4 mmol) was added in a drop-wise manner to a 5 C. solution of C1 (12 g, 54.0 mmol) in tetrahydrofuran (60 mL), at a rate that maintained the internal temperature of the reaction mixture below 10 C. The reaction was allowed to proceed at 5 C., and aliquots were quenched into methanol and analyzed by HPLC to monitor the extent of Grignard formation; once full conversion was observed (?5 to 10 minutes), a solution of tert-butyl 2-oxopyrrolidine-1-carboxylate (11.0 g, 59.4 mmol) in tetrahydrofuran (60 mL) was added drop-wise, again at a rate which maintained the reaction temperature below 10 C. The reaction was monitored by HPLC, and when no additional conversion was observed (?1 hour), it was quenched via careful addition of aqueous acetic acid (10%, 60 mL) and ethyl acetate (100 mL). The organic layer was separated and washed with saturated aqueous sodium chloride solution (2*100 mL), dried over magnesium sulfate, filtered, and concentrated to a mass of 35 g. Heptane (40 mL) was added, to a total volume of approximately 80 mL, and approximately 20 mL of solvent was removed via heating at atmospheric pressure. The mixture was slowly cooled to 20 C., and the resulting thick slurry was allowed to stir overnight at 20 C., whereupon it was filtered. The filter cake was rinsed with cold heptane (0 C., 30 mL) to afford the product as a white solid. Yield: 9.59 g, 34.1 mmol, 63%. 1H NMR (400 MHz, CDCl3) delta 7.79 (s, 1H), 4.72-4.58 (br s, 1H), 3.86 (s, 3H), 3.24-3.14 (m, 2H), 2.74 (dd, J=7.3, 7.0 Hz, 2H), 2.48 (s, 3H), 1.95-1.83 (m, 2H), 1.42 (s, 9H). |
A263384 [6647-98-9]
4-Iodo-1-methyl-1H-pyrazole-3-carboxylic acid
Similarity: 0.75