Home Cart Sign in  
Chemical Structure| 7791-11-9 Chemical Structure| 7791-11-9

Structure of 7791-11-9

Chemical Structure| 7791-11-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Subintoro, Primadi ; Carter, Korey ;

Abstract: Molecular spin qubits based on molecules that feature accessible atomic clock transitions have demonstrated immense potential in quantum information science research, and exemplary in this regard is the holmium polyoxometalate, [Na9Ho(W5O18)2]•35H2O (HoW10). The coherence time of this molecule is limited by spin-phonon coupling driven decoherence processes, and one route to overcome this limitation is to increase the magnetic anisotropy of the metal included within the polyoxometalate (POM) complex. Herein we conducted a full investigation into the fundamental structural and vibrational properties of Lindqvist POMs that include uranium (IV), which also feature MJ = ± 4 ground states, similar to Ho(III) in HoW10. Based on recent results from our group that demonstrated the importance of the secondary lattice elements in tuning the distortion of the D4d symmetry in W10POM complexes, we synthesized eight UW10 complexes with different alkali metal counterions and evaluated how the composition and packing of counterion species affected complex structural and vibrational properties Single crystal X-ray diffraction analysis on complexes 1-8 revealed changes in structural distortion parameters, i.e., skew angle, plane angle, and plane distance, as a function of differences in counterion configurations. Far-infrared and Raman spectra for 1-8 also demonstrated that vibrational mode frequencies [ν(WO5)2, ρ(UO8), ν/ρ(UO8), δ/ρ(UO4), POM deformation mode, δ(W-O-W/W=O/U-O-W), ν(W-O-W), and ν(U-O-W)] were sensitive to changes in counterion composition and packing. To more effectively compare different counterions configuration we developed counterion effective ionic radius (eIR) as a new structural parameter and comparisons between structural distortion parameters and counterion eIR strongly suggest modulation by the secondary lattice elements can affect structural and vibrational manifolds within POM complexes. Partial Least Squares (PLS) analysis was used to quantitatively evaluate correlations observed within this investigation, and PLS statistical models showed strong correlation between counterion eIR and both structural distortion parameters and vibrational mode frequencies. Overall, this investigation illustrates how to diversify the composition of lattice elements within UW10 complexes and confirms the integral role counterions play in modulating the structural and vibrational characteristics of Lindqvist POM complexes with f-elements.

Purchased from AmBeed:

Alternative Products

Product Details of [ 7791-11-9 ]

CAS No. :7791-11-9
Formula : ClRb
M.W : 120.92
SMILES Code : [Rb+].[Cl-]
MDL No. :MFCD00011187
InChI Key :FGDZQCVHDSGLHJ-UHFFFAOYSA-M
Pubchem ID :62683

Safety of [ 7791-11-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302
Precautionary Statements:P264-P270-P301+P312-P330-P501

Computational Chemistry of [ 7791-11-9 ] Show Less

Physicochemical Properties

Num. heavy atoms 2
Num. arom. heavy atoms 0
Fraction Csp3 None
Num. rotatable bonds 0
Num. H-bond acceptors None
Num. H-bond donors None
Molar Refractivity 5.85
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

0.0 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

None
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

None
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

None
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

None
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

None
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

None

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

None
Solubility None mg/ml ; None mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

None
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

None
Solubility None mg/ml ; None mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

None
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

None
Solubility None mg/ml ; None mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

None

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

None
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

None
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

None
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

None
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

None
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

None
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

None
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

None
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

None cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

None
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

None
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

None
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

None
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

None

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

None alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

None alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

None
 

Historical Records