Structure of 78473-10-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 78473-10-6 |
Formula : | C7H4N4 |
M.W : | 144.13 |
SMILES Code : | N#CC1=CN=C(N)C(C#N)=C1 |
MDL No. : | MFCD00462247 |
InChI Key : | YLZXGBMEWRIPQX-UHFFFAOYSA-N |
Pubchem ID : | 295912 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 38.07 |
TPSA ? Topological Polar Surface Area: Calculated from |
86.49 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.75 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.49 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.42 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-1.02 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.56 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.24 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.45 |
Solubility | 5.16 mg/ml ; 0.0358 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.88 |
Solubility | 1.92 mg/ml ; 0.0133 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.81 |
Solubility | 2.21 mg/ml ; 0.0153 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.83 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.78 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
73% | EXAMPLE 3 2-Amino-3,5-dicyanopyridine (5) was prepared from 3 using the procedure described below for the preparation of 5 except that 5 was recrystallized from MeCN [methyl cyanide; acetonitrile) (instead of EtOH). The yield was 73% (7.00 g from 12.0 g (67.2 mmol) of 3] of product homogeneous on TLC (cyclohexane-EtOAc, 1:1); mp 220 C. dec; 1 H NMR (Me2 SO-d6) delta7.90 (s, NH2), 8.40 and 8.58 (two d, 4-H and 6H, J=2 Hz). | |
palladium; In 1,4-dioxane; | Step A 2-amino-3.5-dicyanopyridine A mixture of 2-amino-6-chloro-3,5-dicyanopyridine (Synth. Comm. 1993, 2605, 15.0 g, 84 mmol) and 10% palladium on carbon (10.0 g) in dioxane (150 mL) was shaken on a Parr apparatus under hydrogen (55 psi) for 16 h. More catalyst (7.5 g) was added and after a further 4 h the reaction mixture was filtered through celite washing through with ethanol and evaporated in vacuo. The residue was partitioned between methylene chloride and 1 M HCl. The insoluble material was collected by filtration and dried to give the title compound. The methylene chloride layer was washed with brine, dried (Na2SO4) and evaporated in vacuo to give additional product: 1H NMR (DMSO) delta 7.93 (br s, 2H), 8.41 (d, J=2.2 Hz, 1H), 8.56 (d, J=2.2 Hz, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sulfuric acid; sodium nitrite; In methanol; acetic acid; | Step B 2-Chloro-3,5-dicyanopyridine Acetic acid (37 mL) was added over 10 min to sodium nitrite (13.4 g, 0.194 mol) with stirring. Concentrated sulfuric acid (12.3 mL) was added over 5 min to the resulting thick slurry which was then cooled to 0 C. In a separate flask, pyridinium hydrochloride (14.4 g, 0.125 mol) was added to a stirred mixture of <strong>[78473-10-6]2-amino-3,5-dicyanopyridine</strong> (4.0 g, 27.75 mmol) in acetic acid (55 mL) and the resulting mixture was cooled to 0 C. to give a thick slurry. The nitrite slurry was added to the aminopyridine slurry over 5 min with stirring at 0 C. Acetic acid (50 mL) was added and the thick slurry was warmed to rt. After 1 h at rt the mixture was warmed to 50 C. and after a further 1 h, it was poured into an ice/water mixture (500 mL). The aqueous mixture was extracted with methylene chloride (4 times) and the combined extracts were dried (Na2SO4) and evaporated to a yellow solid. The crude product was purified by chromatography on silica (chloroform/methanol gradient, 1-3% methanol) to give the title compound as a solid: 1H NMR (CDCl3) delta 8.34 (d, J=2.2 Hz, 1H), 8.88 (d, J=2.2 Hz, 1H). | |
With sulfuric acid; sodium nitrite; In methanol; acetic acid; | Step B 2-Chloro-3,5-dicyanopyridine Acetic acid (37 mL) was added over 10 min to sodium nitrite (13.4 g, 0.194 mol) with stirring. Concentrated sulfuric acid (12.3 mL) was added over 5 min to the resulting thick slurry which was then cooled to 0 C. In a separate flask, pyridinium hydrochloride (14.4 g, 0.125 mol) was added to a stirred mixture of <strong>[78473-10-6]2-amino-3,5-dicyanopyridine</strong> (4.0 g, 27.75 mmol) in acetic acid (55 mL) and the resulting mixture was cooled to 0 C. to give a thick slurry. The nitrite slurry was added to the aminopyridine slurry over 5 min with stirring at 0 C. Acetic acid (50 mL) was added and the thick slurry was warmed to rt. After 1 h at rt the mixture was warmed to 50 C. and after a further 1 h, it was poured into an ice/water mixture (500 mL). The aqueous mixture was extracted with methylene chloride (4 times) and the. combined extracts were dried (Na2SO4) and evaporated to a yellow solid. The crude product was purified by chromatography on silica (chloroform/methanol gradient, 1-3% methanol) to give the title compound as a solid: 1H NMR (CDCl3) delta 8.34 (d, J=2.2 Hz, 1H), 8.88 (d, J=2.2 Hz, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; | EXAMPLE 5 2,4-Diaminopyrido[2,3-d]pyrimidine-6-carbonitrile (7). Guanidine*HCl (2.66 g, 27.8 mmol) was added to a solution of NaOMe (sodium methoxide) (1.50 g, 27.8 mmol) in absolute EtOH (180 mL). The mixture was stirred at 20-23 C. for 15 minutes before 5 (2.00 g, 13.9 mmol) was added. After a 24-hour reflux period with rapid stirring, TLC (cyclohexane-EtOAc, 1:1) showed absence of 5. The solid filtered from the cooled mixture was washed on the funnel with H2 O and EtOH; yield 95% (2.45 g). A sample of this material (1.0 g) was stirred with near-boiling Me2 SO (dimethyl sulfoxide) (250 mL), and the slightly cloudy solution was filtered (Celite) to give a clear, pale-yellow filtrate which was then concentrated by evaporation in vacuo (to about 60 mL). Addition of EtOH (200 mL) gave 7 as a light yellow solid (880 mg); 1 H NMR (Me2 SO-d6) delta6.97 (2, NH2), 7.84 (s, NH2), 8.87 and 8.91 (two d, 5-H and 7-H, J=2 Hz). |