Structure of 897957-06-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 897957-06-1 |
Formula : | C9H8BrNO |
M.W : | 226.07 |
SMILES Code : | O=C1N(C)C2=C(C=CC(Br)=C2)C1 |
MDL No. : | MFCD25542196 |
InChI Key : | UUQLZGHQLZAFHD-UHFFFAOYSA-N |
Pubchem ID : | 58006048 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H317 |
Precautionary Statements: | P280 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.22 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 54.34 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.31 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.22 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.65 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.59 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.17 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.39 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.0 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.65 |
Solubility | 0.505 mg/ml ; 0.00223 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.69 |
Solubility | 4.62 mg/ml ; 0.0204 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.42 |
Solubility | 0.0859 mg/ml ; 0.00038 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.51 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.76 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
65% | With hydrazine hydrate; at 100 - 125℃; for 2h; | 1-3.1 (397 mg, 1.65 mmol) and hydrazine hydrate (1 mL, 20.6 mmol) are heated to 100 C for 1 h and at 125 C for 1 h. To the cool reaction mixture DCM and water are added and the aqueous layer extracted twice with DCM. The combined organic layers are washed with brine, dried, concentrated and the residue purified via column chromatography (using solvent mixture cyclohexane / EA = 3:1). Yield 65%. m/z 226 [M+H]+, m/z 224 [M+H]-, rt 0.58 min, LC-MS Method b. |
63% | With hydrazine hydrate; at 125℃; for 72h; | Step 2: Synthesis of Intermediate 1-12.2 1-12.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HC1. The organic layer is dried over MgSC>4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by sunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001 003. |
63% | With hydrazine hydrate; at 125℃; for 72h; | 1-3. I (JS.O g, 63 nunol) and hydrazine hydrate (30 mL, 618 nunol) are heated to 12S C for 72 h.To the cool reaction mixtw-e DCM is added and extracted with water and 1 M HCI. The organiclayer is dried over MgS04 and concentrated. The crystaJlized residue is dissolved in DCM,methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by sunction and washed with cold methanol. Yield 63%, mz 226/228 [M+H]+, rt J.l6 min, LC-MSMethod VOOJ 003. |
63% | With hydrazine hydrate; at 125℃; for 72h; | I-5.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C. for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HCl. The organic layer is dried over MgSO4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed under vacuum. The crystallized product is filtered with sunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001-003 |
63% | With hydrazine hydrate; at 125℃; for 72h; | Step 2: Synthesis of Intermediate 1-5.2 1-5.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HC1. The organic layer is dried over MgSO4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed under vacuum. The crystallized product is filtered withsunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 mi LC-MS Method VOOl 003. |
63% | With hydrazine hydrate; at 125℃; for 72h; | I-3.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C. for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HCl. The organic layer is dried over MgSO4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by sunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001-003. |
63% | With hydrazine hydrate; at 125℃; for 72h; | Step 2: Synthesis of Intermediate I-4.2 [0294] I-4.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C. for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HCl. The organic is layer is dried over MgSO4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by sunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001-003. |
63% | With hydrazine hydrate; at 125℃; for 72h; | 1-4.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HC1. The organic layer is dried over MgS04 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by sunction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001 003. |
63% | With hydrazine; at 125℃; for 72h; | I-12.1 (15.0 g, 63 mmol) and hydrazine hydrate (30 mL, 618 mmol) are heated to 125 C. for 72 h. To the cool reaction mixture DCM is added and extracted with water and 1 M HCl. The organic layer is dried over MgSO4 and concentrated. The crystallized residue is dissolved in DCM, methanol is added and the DCM is removed in vacuo. The crystallized product is filtered by suction and washed with cold methanol. Yield 63%, m/z 226/228 [M+H]+, rt 1.16 min, LC-MS Method V001-003. |
With hydrazine; at 130℃; for 1.33333h; | To a solution of 6-bromorsatin (CASNo. 6326-79-0, 4 52 g, 20 0 mmol) in acetonrtrile (150 mL) was added potassium carbonate (11 1 g, 80 mmol) followed by iodomethane (2 75 mL, 44 0 mmol) The reactron was then placed at 60 C and stirred for 40 minutes The reaction was then cooled to room temperature, tittered and concentrated to 10% of the original volume The reaction was then diluted with dichloromethane, water and brine The layers were separated and the aqueous layer was extracted two additional times with dichloromethane. The organic extracts were combined, dried over anhydrous sodium sulfate filtered and concentrated to provide 6-bromo-1-methyl-1 H-iotandole-2,3- dione as an orange solid without the need for further punfication The beta-bromo-1-methyl- 1 H-iotandole-2,3-diotaone (1 0 g, 4 2 mmol) was then treated with hydrazine hydrate (7 0 mL, 225 mmol) The reaction was heated to 130 C and stirred for 80 minutes, at which time the reaction was placed at room temperature and cooled by the addition of ice Once the reaction was cooled to room temperature it was diluted with dichloromethane and water and the layers were separated The aqueous layer was extracted an additional two times with dichloromethane, and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated The resulting residue was purified by silica gel flash chromatography (ethanol-dichloromethane 0 to 2%) to afford 6-bromo- 1-methyl-1 ,3-diotahydro-mdol-2-one, MS (ES+) m/z 225 9 (IvH-H)* | |
With hydrazine hydrate; at 100 - 125℃; for 2h; | I-3.1 (397 mg, 1.65 mmol) and hydrazine hydrate (1 mL, 20.6 mmol) are heated to 100 C. for 1 h and at 125 C. for 1 h. To the cool reaction mixture DCM and water are added and the aqueous layer extracted twice with DCM. The combined organic layers are washed with brine, dried, concentrated and the residue purified via column chromatography (using solvent mixture cyclohexane/EA=3:1). Yield 65%. m/z 226 [M+H]+, m/z 224 [M+H]-, rt 0.58 min, LC-MS Method b. | |
With hydrazine hydrate; for 1h;Reflux; | General procedure: Step 1: To a 250 mL flask equipped with a silicone oil bubbler was added commercially available isatin (7.7 g, 50 mmol) and anhydrous DMF (80 mL). the mixture was cooled down to 0 oC. To this solution was added NaH (1.32 g, 55 mmol), followed by the addition of CH3I in 15 min. Upon completion of the reaction (monitored by TLC), the mixture was diluted with saturated NH4Cl solution and extracted with ethyl acetate. The organic layer was washed with water, dried over Na2SO4, filtered, and concentrated to yield the crude N-methylindoline-2, 3-dione, which was used directly in the next step. Step 2: The N-methylindoline-2, 3-dione (7.58 g, 47 mmol) was refluxed in NH2·NH2-H2O ( 35 %) for 1h. Then the mixture was cooled to rt. The crude product was extracted with ethyl acetate. The combined organic layer was then dried over Na2SO4, purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1). 1-Methylindolin-2-one was obtained as a pink solid. |
A148054 [20870-90-0]
5-Bromo-1-methyl-2-oxoindoline
Similarity: 0.91
A148054 [20870-90-0]
5-Bromo-1-methyl-2-oxoindoline
Similarity: 0.91
A148054 [20870-90-0]
5-Bromo-1-methyl-2-oxoindoline
Similarity: 0.91