Structure of 933047-52-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Hassan, Kamrul ; Trong Tran, Anh Tuan ; Jalil, MA ; Tung, Tran Thanh ; Nine, Md Julker ; Losic, Dusan
Abstract: Methanol poisoning poses significant health risks, particularly in less developed countries, where adulterated alcoholic beverages often lead to severe morbidity and mortality. Current diagnostic methods, such as gas−liquid chromatography and blood gas analysis, are complex and prohibitively expensive, making them inaccessible in resource-constrained settings. To address this issue, we present a novel, simple, low-cost chemiresistive sensor for the rapid, selective, and ultrasensitive detection of methanol at ultralow concentrations in the presence of high ethanol concentrations. The sensor leverages an extrusion-printed hybrid composite of NU-1000 metal−organic frameworks (MOFs) and graphene, exploiting their unique structural and electronic synergies based on high porosity, functional metal sites of MOFs and graphene’s excellent conductivity that enhance sensitivity and selectivity. To further overcome challenges in selectivity, we integrated machine learning algorithms and principal component analysis (PCA), significantly improving the sensor’s ability to differentiate methanol from ethanol and other potential interferents. The extrusion printing technique ensures the fabrication of uniform, stable, and durable sensor layers on ceramic substrates, maintaining reproducible performance and stability. Our results demonstrate the sensor’s capability to detect methanol vapors at parts-per-billion (ppb) levels in the presence of higher concentration of ethanol (ppm), making it an effective tool for monitoring methanol intoxication through breath analysis. This innovative approach represents a notable advancement in gas sensing technologies, offering a scalable, cost-effective solution for applications in medical diagnostics, industrial monitoring, and consumer safety. This research highlights the potential of extrusion-printed hybrid materials in advancing gas sensing technologies to enhance public health and safety.
Show More >
Keywords: chemiresistive sensor ; methanol detection ; ethanol adulteration ; NU-1000 MOFs ; graphene hybrid materials
Show More >
Selective Photocatalytic Reduction of CO2 to CH4 over NU-1000 Metal-Organic Frameworks
Korhonen, Pekka ; Thangamuthu, Madasamy ; Castaldelli, Evandro ; Diego-Lopez, Ander ; Weilhard, Andreas ; Clowes, Rob , et al.
Abstract: CO2 adsorption and its subsequent utilization represent a promising avenue for mitigating climate change. The conversion of CO2 into valuable and useful products like carbon monoxide, methane, and methanol offers significant economic benefits. However, due to the low reactivity of CO2, the incorporation of CO2 adsorbents alongside catalytic materials has been pivotal in increasing the concentration of CO2 molecules around the catalytic sites. This strategy frequently relies on the precise deposition of the catalyst onto the adsorbent material. In this work, we explore NU-1000, a zirconium-based metal-organic framework originally designed as a CO2 adsorbent, to act as a selective photocatalyst for gas-phase CO2 reduction to CH4. NU-1000 contains UVA light absorbing chromophore linkers, endowing it with the dual functionality of CO2 adsorbent and photocatalyst, which is crucial for efficient CO2 reutilization. Our research showcases an easily reproducible, and greener synthesis method for NU-1000 using microwaves. We study the activity of NU-1000, including a functionalised variant, in the gas-phase photoreduction of CO2 to CH4 at room temperature and atmospheric pressure with electrons and protons derived from water. Remarkably, both the native and functionalised MOFs exhibit a rate of 170 and 800 µmol∙g-1∙h-1, respectively, alongside an exceptional selectivity of over 99%. These findings represent some of the highest reported values for gas phase CO2 photoreduction under atmospheric conditions. Our results provide a foundation for exploring materials that can serve as both catalysts and sorbents in the photocatalytic transformation of CO2 to value added products.
Show More >
Keywords: CO2 reduction ; photocatalysis ; NU-1000 ; metal-organic frameworks ; microwave synthesis
Show More >
Kondo, Yoshifumi ; Hino, Kenta ; Kuwahara, Yasutaka ; Mori, Kohsuke ; Yamashita, Hiromi ;
Abstract: Photocatalytic production of hydrogen peroxide (H2O2) from dioxygen (O2) and water (H2O) has shown promise for the artificial photosynthesis of liquid fuel. We previously demonstrated that an Al-based metal-organic framework (MOF) functions as a suitable platform for photocatalytic H2O2 production owing to the efficient suppression of H2O2 decomposition caused by the photocatalysts themselves, which increases the yield of H2O2. However, the photocatalytic efficiency of Al-based MOFs is often limited by their short-lived charge separation The energy transfer process is a beneficial approach to promoting charge separation and thereby improving the photocatalytic activity; MOFs enable highly efficient energy transfer between organic linkers because they allow precise control of the arrangement of the building blocks. Herein, we demonstrate that an Al-based MOF composed of both porphyrin- and pyrene-based organic linkers (Al-TCPP(10-X)-TBAPyX) is a promising photocatalyst for producing H2O2 from O2 and H2O without additives under visible-light irradiation while simultaneously enabling efficient suppression of undesired H2O2 decomposition Efficient energy transfer from 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) to tetrakis(4-carboxyphenyl)porphyrin (TCPP) was driven within Al-TCPP(10-X)-TBAPyX, resulting in dramatically enhanced photocatalytic H2O2 production through optimization of the linker mixture ratio in the MOF structure. The present work not only proposes a new reaction pathway for H2O2 generation via1O2 intermediates, which is quite different from well-accepted mechanisms involving O2 -, but also provides a promising strategy for designing catalysts to realize efficient photosynthetic H2O2 production
Show More >
Aahlen, Michelle ; Amombo Noa, Francoise M. ; Oehrstroem, Lars ; Hedbom, Daniel ; Stroemme, Maria ; Cheung, Ocean
Abstract: Anthropogenic greenhouse gas emission poses as serious threat to our environment and it is therefore of utmost importance that efficient systems are developed to mitigate these issues. SF6, in particular, has attracted more attention in recent years due to its global warming potential which severely exceeds that of CO2. In this study we present the SF6 sorption properties of four highly porous 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene-based (TBAPy4-) metal-organic frameworks containing either ytterbium(III), thulium(III), cerium(III), or hafnium(IV). These MOFs can be synthesized with high crystallinity in as little as 5 h and were found to have good SF6 uptakes due to their suitable pore size. The SF6 uptake of the Yb-TBAPy MOF reached 2.33 mmol g-1 with high Henry's law SF6-over-N2 selectivity of ∼80 at 1 bar and 293 K. The TBAPy-MOFs were also found to have good chem. stability and good cyclic SF6 sorption stability with fast SF6 uptake. These TBAPy-MOFs possesses many of the properties desired for an efficient SF6 sorbent and may be suitable sorbents for further development, including sorbent processing for industrial applications.
Show More >
Keywords: Metal-organic frameworks ; Greenhouse gas capture ; Sulfur hexafluoride ; TBAPy
Show More >
| CAS No. : | 933047-52-0 |
| Formula : | C44H26O8 |
| M.W : | 682.67 |
| SMILES Code : | O=C(O)C1=CC=C(C2=C(C3=C45)C=CC5=C(C6=CC=C(C=C6)C(O)=O)C=C(C7=CC=C(C=C7)C(O)=O)C4=CC=C3C(C8=CC=C(C=C8)C(O)=O)=C2)C=C1 |
| MDL No. : | MFCD30478418 |
| InChI Key : | HVCDAMXLLUJLQZ-UHFFFAOYSA-N |
| Pubchem ID : | 90005588 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H315-H319-H335 |
| Precautionary Statements: | P261-P264-P271-P280-P302+P352-P305+P351+P338 |
| Num. heavy atoms | 52 |
| Num. arom. heavy atoms | 40 |
| Fraction Csp3 | 0.0 |
| Num. rotatable bonds | 8 |
| Num. H-bond acceptors | 8.0 |
| Num. H-bond donors | 4.0 |
| Molar Refractivity | 199.73 |
| TPSA ? Topological Polar Surface Area: Calculated from |
149.2 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
3.4 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
9.64 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
10.04 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
6.43 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
8.78 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
7.66 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-10.19 |
| Solubility | 0.0000000444 mg/ml ; 0.0000000001 mol/l |
| Class? Solubility class: Log S scale |
Insoluble |
| Log S (Ali)? Ali: Topological method implemented from |
-12.69 |
| Solubility | 0.0000000001 mg/ml ; 0.0 mol/l |
| Class? Solubility class: Log S scale |
Insoluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-13.73 |
| Solubility | 0.0 mg/ml ; 0.0 mol/l |
| Class? Solubility class: Log S scale |
Insoluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-3.62 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
2.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
1.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
2.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
3.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<3.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.55 |
Tags: 933047-52-0 synthesis path| 933047-52-0 SDS| 933047-52-0 COA| 933047-52-0 purity| 933047-52-0 application| 933047-52-0 NMR| 933047-52-0 COA| 933047-52-0 structure

A162638 [1799412-42-2]
4-(1-(o-Tolyl)vinyl)benzoic acid
Similarity: 0.95

A162638 [1799412-42-2]
4-(1-(o-Tolyl)vinyl)benzoic acid
Similarity: 0.95

A341431 [59662-46-3]
4'-Butyl-[1,1'-biphenyl]-4-carboxylic acid
Similarity: 0.95
Precautionary Statements-General | |
| Code | Phrase |
| P101 | If medical advice is needed,have product container or label at hand. |
| P102 | Keep out of reach of children. |
| P103 | Read label before use |
Prevention | |
| Code | Phrase |
| P201 | Obtain special instructions before use. |
| P202 | Do not handle until all safety precautions have been read and understood. |
| P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
| P211 | Do not spray on an open flame or other ignition source. |
| P220 | Keep/Store away from clothing/combustible materials. |
| P221 | Take any precaution to avoid mixing with combustibles |
| P222 | Do not allow contact with air. |
| P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
| P230 | Keep wetted |
| P231 | Handle under inert gas. |
| P232 | Protect from moisture. |
| P233 | Keep container tightly closed. |
| P234 | Keep only in original container. |
| P235 | Keep cool |
| P240 | Ground/bond container and receiving equipment. |
| P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
| P242 | Use only non-sparking tools. |
| P243 | Take precautionary measures against static discharge. |
| P244 | Keep reduction valves free from grease and oil. |
| P250 | Do not subject to grinding/shock/friction. |
| P251 | Pressurized container: Do not pierce or burn, even after use. |
| P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
| P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
| P262 | Do not get in eyes, on skin, or on clothing. |
| P263 | Avoid contact during pregnancy/while nursing. |
| P264 | Wash hands thoroughly after handling. |
| P265 | Wash skin thouroughly after handling. |
| P270 | Do not eat, drink or smoke when using this product. |
| P271 | Use only outdoors or in a well-ventilated area. |
| P272 | Contaminated work clothing should not be allowed out of the workplace. |
| P273 | Avoid release to the environment. |
| P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
| P281 | Use personal protective equipment as required. |
| P282 | Wear cold insulating gloves/face shield/eye protection. |
| P283 | Wear fire/flame resistant/retardant clothing. |
| P284 | Wear respiratory protection. |
| P285 | In case of inadequate ventilation wear respiratory protection. |
| P231 + P232 | Handle under inert gas. Protect from moisture. |
| P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
| Code | Phrase |
| P301 | IF SWALLOWED: |
| P304 | IF INHALED: |
| P305 | IF IN EYES: |
| P306 | IF ON CLOTHING: |
| P307 | IF exposed: |
| P308 | IF exposed or concerned: |
| P309 | IF exposed or if you feel unwell: |
| P310 | Immediately call a POISON CENTER or doctor/physician. |
| P311 | Call a POISON CENTER or doctor/physician. |
| P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
| P313 | Get medical advice/attention. |
| P314 | Get medical advice/attention if you feel unwell. |
| P315 | Get immediate medical advice/attention. |
| P320 | |
| P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
| P321 | |
| P322 | |
| P330 | Rinse mouth. |
| P331 | Do NOT induce vomiting. |
| P332 | IF SKIN irritation occurs: |
| P333 | If skin irritation or rash occurs: |
| P334 | Immerse in cool water/wrap n wet bandages. |
| P335 | Brush off loose particles from skin. |
| P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
| P337 | If eye irritation persists: |
| P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
| P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P342 | If experiencing respiratory symptoms: |
| P350 | Gently wash with plenty of soap and water. |
| P351 | Rinse cautiously with water for several minutes. |
| P352 | Wash with plenty of soap and water. |
| P353 | Rinse skin with water/shower. |
| P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
| P361 | Remove/Take off immediately all contaminated clothing. |
| P362 | Take off contaminated clothing and wash before reuse. |
| P363 | Wash contaminated clothing before reuse. |
| P370 | In case of fire: |
| P371 | In case of major fire and large quantities: |
| P372 | Explosion risk in case of fire. |
| P373 | DO NOT fight fire when fire reaches explosives. |
| P374 | Fight fire with normal precautions from a reasonable distance. |
| P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
| P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
| P378 | |
| P380 | Evacuate area. |
| P381 | Eliminate all ignition sources if safe to do so. |
| P390 | Absorb spillage to prevent material damage. |
| P391 | Collect spillage. Hazardous to the aquatic environment |
| P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
| P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
| P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
| P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
| P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
| P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
| P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
| P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
| P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
| P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
| P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
| P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
| P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
| P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
| P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
| P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
| P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
| P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
| P370 + P376 | In case of fire: Stop leak if safe to Do so. |
| P370 + P378 | In case of fire: |
| P370 + P380 | In case of fire: Evacuate area. |
| P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
| P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
| Code | Phrase |
| P401 | |
| P402 | Store in a dry place. |
| P403 | Store in a well-ventilated place. |
| P404 | Store in a closed container. |
| P405 | Store locked up. |
| P406 | Store in corrosive resistant/ container with a resistant inner liner. |
| P407 | Maintain air gap between stacks/pallets. |
| P410 | Protect from sunlight. |
| P411 | |
| P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
| P413 | |
| P420 | Store away from other materials. |
| P422 | |
| P402 + P404 | Store in a dry place. Store in a closed container. |
| P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
| P403 + P235 | Store in a well-ventilated place. Keep cool. |
| P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
| P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
| P411 + P235 | Keep cool. |
Disposal | |
| Code | Phrase |
| P501 | Dispose of contents/container to ... |
| P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
| Code | Phrase |
| H200 | Unstable explosive |
| H201 | Explosive; mass explosion hazard |
| H202 | Explosive; severe projection hazard |
| H203 | Explosive; fire, blast or projection hazard |
| H204 | Fire or projection hazard |
| H205 | May mass explode in fire |
| H220 | Extremely flammable gas |
| H221 | Flammable gas |
| H222 | Extremely flammable aerosol |
| H223 | Flammable aerosol |
| H224 | Extremely flammable liquid and vapour |
| H225 | Highly flammable liquid and vapour |
| H226 | Flammable liquid and vapour |
| H227 | Combustible liquid |
| H228 | Flammable solid |
| H229 | Pressurized container: may burst if heated |
| H230 | May react explosively even in the absence of air |
| H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
| H240 | Heating may cause an explosion |
| H241 | Heating may cause a fire or explosion |
| H242 | Heating may cause a fire |
| H250 | Catches fire spontaneously if exposed to air |
| H251 | Self-heating; may catch fire |
| H252 | Self-heating in large quantities; may catch fire |
| H260 | In contact with water releases flammable gases which may ignite spontaneously |
| H261 | In contact with water releases flammable gas |
| H270 | May cause or intensify fire; oxidizer |
| H271 | May cause fire or explosion; strong oxidizer |
| H272 | May intensify fire; oxidizer |
| H280 | Contains gas under pressure; may explode if heated |
| H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
| H290 | May be corrosive to metals |
Health hazards | |
| Code | Phrase |
| H300 | Fatal if swallowed |
| H301 | Toxic if swallowed |
| H302 | Harmful if swallowed |
| H303 | May be harmful if swallowed |
| H304 | May be fatal if swallowed and enters airways |
| H305 | May be harmful if swallowed and enters airways |
| H310 | Fatal in contact with skin |
| H311 | Toxic in contact with skin |
| H312 | Harmful in contact with skin |
| H313 | May be harmful in contact with skin |
| H314 | Causes severe skin burns and eye damage |
| H315 | Causes skin irritation |
| H316 | Causes mild skin irritation |
| H317 | May cause an allergic skin reaction |
| H318 | Causes serious eye damage |
| H319 | Causes serious eye irritation |
| H320 | Causes eye irritation |
| H330 | Fatal if inhaled |
| H331 | Toxic if inhaled |
| H332 | Harmful if inhaled |
| H333 | May be harmful if inhaled |
| H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
| H335 | May cause respiratory irritation |
| H336 | May cause drowsiness or dizziness |
| H340 | May cause genetic defects |
| H341 | Suspected of causing genetic defects |
| H350 | May cause cancer |
| H351 | Suspected of causing cancer |
| H360 | May damage fertility or the unborn child |
| H361 | Suspected of damaging fertility or the unborn child |
| H361d | Suspected of damaging the unborn child |
| H362 | May cause harm to breast-fed children |
| H370 | Causes damage to organs |
| H371 | May cause damage to organs |
| H372 | Causes damage to organs through prolonged or repeated exposure |
| H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
| Code | Phrase |
| H400 | Very toxic to aquatic life |
| H401 | Toxic to aquatic life |
| H402 | Harmful to aquatic life |
| H410 | Very toxic to aquatic life with long-lasting effects |
| H411 | Toxic to aquatic life with long-lasting effects |
| H412 | Harmful to aquatic life with long-lasting effects |
| H413 | May cause long-lasting harmful effects to aquatic life |
| H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL





