Structure of H-D-Leu-OBzl·TosOH
CAS No.: 17664-93-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
| CAS No. : | 17664-93-6 |
| Formula : | C20H27NO5S |
| M.W : | 393.50 |
| SMILES Code : | CC(C)C[C@@H](N)C(OCC1=CC=CC=C1)=O.O=S(C2=CC=C(C)C=C2)(O)=O |
| MDL No. : | MFCD00066116 |
| InChI Key : | QTQGHKVYLQBJLO-UTONKHPSSA-N |
| Pubchem ID : | 44629929 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H302-H315-H319-H335 |
| Precautionary Statements: | P261-P305+P351+P338 |
| Num. heavy atoms | 27 |
| Num. arom. heavy atoms | 12 |
| Fraction Csp3 | 0.35 |
| Num. rotatable bonds | 7 |
| Num. H-bond acceptors | 6.0 |
| Num. H-bond donors | 2.0 |
| Molar Refractivity | 105.51 |
| TPSA ? Topological Polar Surface Area: Calculated from |
115.07 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
3.23 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.18 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.27 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.96 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.34 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.79 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-2.89 |
| Solubility | 0.507 mg/ml ; 0.00129 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (Ali)? Ali: Topological method implemented from |
-3.19 |
| Solubility | 0.253 mg/ml ; 0.000642 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.42 |
| Solubility | 0.151 mg/ml ; 0.000384 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.86 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
0.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.45 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 99% | D-Leucine O-benzyl ester Tosylate salt To benzyl alcohol (8.2 g) dissolved in benzene (30 mL) was added D-leucine (5.0 g) and p-toluenesulfonic acid monohydrate (8.0 g). The reaction was warmed to reflux with removal of water overnight. Once TLC indicated consumption of starting material, the reaction was cooled, and the resulting solid was filtered and washed with EtOAc to give the title compound as a white powder (14.26 g, 99%). | |
| 73% | A. Benzyl D-Leucinate p-Toluenesulfonate This compound was prepared in a manner corresponding precisely to that described in Part A of Example 1 for preparation of the D-alinate compound. Yield, 73%, m.p. 155-156 C. Analysis, calculated for C20 H27 NO5 S (393.50): C, 61.05; H, 6.92; N, 3.56. Found: C, 61.17; H, 6.68; N, 3.81. |
[ 98-01-1 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
[ 100-52-7 ]
[ 17664-93-6 ]
[ 731807-68-4 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
[ 17664-93-6 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| With potassium carbonate; In water; | Preparation of 3-[(1R)-1-(benzyloxycarbonyl)-3-methylbutyl]amino}-1-propanesulfonic acid (Compound HI); D-Leucine benzylester p-tosylate (2.5 g, 6.3 mmol) was treated with an aqueous solution of K2CO3 (30 mL). The mixture was extracted with EtOAc (3×30 mL). The organic extracts were separated, combined, dried with Na2SO4, filtered, evaporated under reduced pressure and dried in vacuo. To a solution of D-Leucine benzylester (6.3 mmol) in acetonitrile (9 mL) and MeOH (3 mL) was added 1,3-propane sultone (691 mg, 5.7 mmol). The solution was stirred at reflux for 2.5 hours. The reaction mixture was cooled to room temperature. The solid material was filtered and washed with aconitrile (2×20 mL). The solid was dissolved in 20% water/EtOH (75 mL). Dowex Marathon C ion exchange resin (strongly acidic) was added to the solution. The suspension was stirred for 15 minutes before the resin was removed by filtration. The filtrate was evaporated under reduced pressure and dried in vacuo, affording the title compound (960 mg, 49%). 1H NMR (D2O, 500 MHz) delta ppm 7.52 (m, 5H), 5.41 (d, 1H, J=12.2 Hz), 5.35 (d, 1H, J=12.2 Hz), 4.16 (m, 1H), 3.22 (m, 2H), 2.97 (t, 2H, J=6.8 Hz), 2.16 (m, 2H), 1.88 (m, 1H), 1.79 (m, 1H), 1.76 (m, 1H), 0.94 (d, 6H, J=3.9 Hz). 13C (DMSO, 125 MHz) delta ppm 169.60, 135.62, 129.24, 129.21, 129.11, 68.08, 58.09, 49.87, 46.48, 24.77, 23.50, 22.50, 22.04. [alpha]D=-2.1 (c=0.00095 in water), ES-MS 344 (M+1). |

[ 17664-93-6 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| EXAMPLE 14 Synthesis of (2S,3)-3-amino-2-hydroxy-4-phenylbutanoyl-(S)-leucyl-(R)-leucine (2S,3R)-3-N-Benzyloxycarbonylamino-2-hydroxy-4-phenylbutanoyl-(S)-leucine (1.11 g) was reacted with 983.3 mg of <strong>[17664-93-6](R)-leucine benzylester p-toluenesulfonate</strong> and the resulting condensation product was isolated in the same manner as in the step (a) of Example 12 to give 1.39 g of the 3-N-benzyloxycarbonyl-protected derivative of (2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-(S)-leucyl-(R)-leucine as a powder. This protected product showed a value of m/e 646 in the analysis of mass spectrometry. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 88% | With benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; N-ethyl-N,N-diisopropylamine; In tetrahydrofuran; at 0 - 20℃; | These syntheses were carried out according to the scheme shown in FIG. 4. The intermediates described below correspond to those shown in FIG. 4. To a suspension of Boc-D-Phe-OH intermediate I-1 (7.96 g, 30.0 mmol), D-Leu-OBn p-TsOH intermediate I-2 (11.80 g, 30.0 mmol), HOBt monohydrate (4.46 g, 33.0 mmol) and DIEA (8.53 g, 66.0 mmol) in anhydrous THF (250 mL) cooled in an ice-water bath was added EDCI (6.33 g, 33.0 mmol) in four portions over 20 minutes with 5 minutes between each addition. The suspension was stirred overnight from a starting temperature of 0 C. to room temperature. After evaporation of THF, the residue was dissolved in ethyl acetate and washed sequentially with 10% citric acid, saturated NaHCO3 and water. The organic phase was dried over sodium sulfate and evaporated under reduced pressure. The residue was dissolved in DCM, passed through a silica gel plug and eluted with 20% ethyl acetate in hexanes. The eluant was evaporated to give the pure product, Boc-D-Phe-D-Leu-OBn, intermediate I-3 (12.40 g, 88%) as a clear oil. LC-MS: m/z=469 (M+H).; FIG. 4: General scheme used in the synthesis of compounds (25)-(37). Steps a-h were carried out with the following reactants or conditions: a) EDCI, HOBt, DIEA, THF; b) TFA, DCM; c) Boc-D-Phe-OH, EDCI, HOBt, DIEA; d) H2, Pd/C; e) D-Lys(Boc)-OAll, TBTU, DIEA, DMF; f) Pd(PPh3)4, pyrrolidine; g) HNRaRb, HBTU; h) HCl, dioxane. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| With pyridine; In diethyl ether; at 0℃; for 5.66667h; | Reference Example 7 N-[(chloromethoxy)carbonyl]-D-leucinate To a mixed solution of D-leucine benzyl ester p-toluenesulfonate (2.20 g) and diethyl ether (18 mL) was added dropwise a solution (18 mL) of pyridine (950 muL) and chloromethyl chloroformate (547 muL) in diethyl ether over 40 min under ice-cooling, and the mixture was stirred for 5 hr under a nitrogen atmosphere. The reaction mixture was diluted with diethyl ether, washed with water and brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate-hexane) to give the title compound (1.57 g) as a white powder. 1H-NMR (CDCl3, 200MHz):delta 0.92 (3H, d, J = 6.0 Hz), 0.94 (3H, d, J= 6.0 Hz), 1.50-1.71 (3H, m), 4.40-4.51 (1H, m), 5.18 (2H, s), 5.35 (1H, d, J = 9.2 Hz), 5.74 (2H, q, J= 6.2 Hz), 7.32-7.42 (5H, m). |
[ 17664-93-6 ]
