Structure of 101382-55-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 101382-55-2 |
Formula : | C11H9NO3 |
M.W : | 203.19 |
SMILES Code : | O=CC1=CC2=CC=C(OC)C=C2N=C1O |
MDL No. : | MFCD02986395 |
InChI Key : | VUKFTGRTRKQOKY-UHFFFAOYSA-N |
Pubchem ID : | 600262 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H319 |
Precautionary Statements: | P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 10 |
Fraction Csp3 | 0.09 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 55.65 |
TPSA ? Topological Polar Surface Area: Calculated from |
59.42 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.88 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.15 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.76 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.64 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.09 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.7 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.82 |
Solubility | 0.311 mg/ml ; 0.00153 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.03 |
Solubility | 0.19 mg/ml ; 0.000933 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.21 |
Solubility | 0.126 mg/ml ; 0.000619 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.01 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.46 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90% | With acetic acid; for 10h;Heating; | A stirred solution of 2 (1g, 4.51 mmol) in AcOH (90 mL) was heated to 95 oC for 10 h.The reaction mixture was poured into crushed ice and stirred for 30 min. The resultingsolid was filtered, washed with water, and dried to afford 7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde (3) (0.80 g, 90%). |
76% | With acetic acid; at 110℃; for 16h; | A suspension of 2-chloro-7-methoxyquinoline-3-carbaldehyde (8.Og, 36.2 mmol) in 70% acetic acid (370 mL) was heated to 110 C for 16h. Upon cooling the reaction mixture to roomtemperature and poured into crushed ice ;solid was filtered off and washed with water, dried under reduced pressure for overnight to give title compound as pale yellow solid (5.6 g, 76%).1H NMR (400 MHz, DMSO-d6) oe 12.07 (s, 1H), 10.18 (s, 1H), 8.43 (s, 1H), 7.84 (d, J=8.9 Hz, 1H), 6.89 (dd, J=2.5 Hz, 8.8 Hz, 1H), 6.82 (d, J=1.9 Hz, 1H), 3.86 (s, 3H); LC-MS: mz 204.1 (M+1). |
76% | With acetic acid; at 110℃; for 16h; | Step-c Synthesis of 7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde A suspension of 2-chloro-7-methoxyquinoline-3-carbaldehyde (8.0 g, 36.2 mmol) in 70% acetic acid (370 mL) was heated to 110 C. for 16 h. Upon cooling the reaction mixture to room temperature and poured into crushed ice;solid was filtered off and washed with water, dried under reduced pressure for overnight to give title compound as pale yellow solid (5.6 g, 76%). 1H NMR (400 MHz, DMSO-d6) delta 12.07 (s, 1H), 10.18 (s, 1H), 8.43 (s, 1H), 7.84 (d, J=8.9 Hz, 1H), 6.89 (dd, J=2.5 Hz, 8.8 Hz, 1H), 6.82 (d, J=1.9 Hz, 1H), 3.86 (s, 3H); LC-MS: m/z 204.1 (M+1)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylsilane; trifluoroacetic acid; at 20℃; for 16h;Cooling with ice; | To an ice-cooled solution of 7-methoxy-2-oxo- 1 ,2-dihydroquinoline-3-carbaldehyde (6 g, 29.55 mmol) in TFA (110 mL) was added triethyl silane (13.2 mL) drop wise and stirred at RT for 16h. Reaction mixture was poured into ice water; solid was filtered off and washed with water, dried under reduced pressure for overnight to give title compound as pale yellow solidcrude (6 g). 1H NMR (400 MHz, DMSO-d6) oe 11.59 (s, 1H), 7.67 (s, 1H), 7.48 (d, J=8.8 Hz,1H), 6.78-6.75 (m, 2H), 3.78 (s, 3H), 2.04 (s, 3H); LC-MS: mlz 190.1 (M+1). | |
With triethylsilane; trifluoroacetic acid; at 20℃; for 16h;Cooling with ice; | Step-d Synthesis of 7-methoxy-3-methylquinolin-2(1H)-one To an ice-cooled solution of <strong>[101382-55-2]7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</strong> (6 g, 29.55 mmol) in TFA (110 mL) was added triethyl silane (13.2 mL) drop wise and stirred at RT for 16 h. Reaction mixture was poured into ice water; solid was filtered off and washed with water, dried under reduced pressure for overnight to give title compound as pale yellow solid crude (6 g). 1H NMR (400 MHz, DMSO-d6) delta 11.59 (s, 1H), 7.67 (s, 1H), 7.48 (d, J=8.8 Hz, 1H), 6.78-6.75 (m, 2H), 3.78 (s, 3H), 2.04 (s, 3H); LC-MS: m/z 190.1 (M+1)+. | |
With triethylsilane; trifluoroacetic acid; at 0 - 20℃; | 30.7 ml of triethylsilane was added to a trifluoroacetic acid (300 ml) solution of 13 g of 7- methoxy-2-oxo-l, 2-dihydroquinoline-3-carbaldehyde while EPO <DP n="49"/>being stirred under ice-cooling and stirred at room temperature overnight. The reaction solution was poured into ice water and extracted with dichloromethane and, after washed with water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography(dichloromethane :methanol = 30:1), and 11.1 g of 7- methoxy-3-methyl-lH-quinolin-2-one was obtained in the form of a white powder. 1H-NMR ( DMSO-ds) deltappm:2.02(3H, s) , 3.77(3H, s) , 6.70-6.80 (2H, m) , 7.45(1H, d, J=8.4Hz), 7.64(1H, s) , 11.56(1H, brs). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To 30 mL of an N,N-dimethylformamide solution containing 1.5 g of <strong>[101382-55-2]7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</strong>, 0.32 g of 60% sodium hydride was added, and the mixture was stirred at 50C for 30 minutes. Thereto was added 1.53 mL of 2-bromomethyl-1,3-dioxolane, and the reaction mixture was stirred at 80 to 90C for 2 hours. Thereto was added 1.53 mL of 2-bromomethyl-1,3-dioxolane, and the reaction mixture was stirred for 3 hours and 30 minutes. Water and ethyl acetate were then added thereto, and the reaction mixture was adjusted to pH 1.5 with 6 mol/L hydrochloric acid. The organic layer was separated, and the aqueous layer was extracted twice with ethyl acetate. The organic layer and the extract were combined, the resultant solution was washed with an aqueous saturated sodium chloride solution and dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residue thus obtained was added with a mixed solution of diethyl ether and ethyl acetate, and a solid substance collected by filtration, and then purified by silica gel column chromatography [eluent; chloroform] to obtain 0.35 g of a yellow solid, 1-(1,3-dioxolan-2-ylmethyl)-<strong>[101382-55-2]7-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde</strong>. 1H-NMR (CDCl3) delta: 3.88-3.93 (2H, m), 3.95 (3H, s), 4.00-4.10 (2H, m), 4.56 (2H, d, J=4.3 Hz), 5.26 (1H, t, J=4.3 Hz), 6.88 (1H, dd, J=8.8, 2.2 Hz), 7.09 (1H, d, J=2.2 Hz), 7.63 (1H, d, J=8.8 Hz), 8.32 (1H, s), 10.42 (1H, s) |