Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 123-07-9 Chemical Structure| 123-07-9
Chemical Structure| 123-07-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4-Ethylphenol is also known as 4-EP which is a para-substituted phenolic compound found in red wine.

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of 4-Ethylphenol

CAS No. :123-07-9
Formula : C8H10O
M.W : 122.16
SMILES Code : OC1=CC=C(CC)C=C1
MDL No. :MFCD00002393
InChI Key :HXDOZKJGKXYMEW-UHFFFAOYSA-N
Pubchem ID :31242

Safety of 4-Ethylphenol

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H318-H401
Precautionary Statements:P273-P280-P305+P351+P338+P310-P501
Class:8
UN#:2430
Packing Group:

Application In Synthesis of 4-Ethylphenol

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 123-07-9 ]

[ 123-07-9 ] Synthesis Path-Downstream   1~6

  • 1
  • [ 74-96-4 ]
  • [ 1095-03-0 ]
  • [ 123-07-9 ]
  • 3
  • [ 123-07-9 ]
  • [ 89-20-3 ]
  • 4
  • [ 3325-11-9 ]
  • [ 123-07-9 ]
  • C14H13N5O [ No CAS ]
YieldReaction ConditionsOperation in experiment
51% General procedure: To a mixture of compound 3(1.5 mmol) and 3M HCl (1.53 mL) at 0 °C, a solution of sodium nitrite (NaNO2, 1.58mmol) in water (3 mL) was added dropwise while maintaining the temperaturebelow 5 °C. After stirring for 30 min, asolution of diazonium chloride was prepared. Subsequently, a solution ofdiazonium chloride was added gradually to a mixture of phenols/anilines (4a,b; 6a?f;8a?k or 9a?e, 1.5 mmol), and ethanol (3 mL) at 0-5 °C. The reaction mixture was adjusted to pH 8-9 with 1 Maq. NaOH. After addition, the mixture was continued to stir for 3-6 h. Thesolid was collected, washed with water (3×15 mL), dried and purified by PTLC orsilica gel column chromatography to give the target products IIa?x.
  • 5
  • [ 150-76-5 ]
  • ethylphenol [ No CAS ]
  • propylphenol [ No CAS ]
  • butylphenol [ No CAS ]
  • pentylphenol [ No CAS ]
  • [ 123-07-9 ]
  • [ 128-39-2 ]
  • [ 620-17-7 ]
  • [ 2934-05-6 ]
  • [ 2078-54-8 ]
  • [ 26886-05-5 ]
  • [ 2934-07-8 ]
  • [ 4130-42-1 ]
  • [ 96-76-4 ]
  • [ 1197-34-8 ]
  • [ 936-89-0 ]
  • [ 120-95-6 ]
  • [ 876-20-0 ]
  • [ 54932-77-3 ]
YieldReaction ConditionsOperation in experiment
With molybdenum(VI) oxide; In ethanol; at 280℃; for 4h;Inert atmosphere; General procedure: 2.0 g of guaiac acid (purchased in Tianjin Guangfu Technology Co., Ltd.), 0.5 g of MOS catalyst and 100 ml of ethanol were placed in a 300 ml reaction vessel, and the air in the reaction vessel was replaced with nitrogen. The temperature was raised to 280 C, and the reaction was stirred for 4 h. After the reaction was completed, the mixture was filtered under suction and rotary evaporated. The liquid product was subjected to qualitative analysis on a gas chromatography-mass spectrometer (GC6890-MS5973, Agilent), and the internal standard was added. Quantitative analysis by gas chromatography. The chromatogram was performed on an HP-5ms, 30m X 0.25mm X 0.25mum capillary column. The conversion of the raw guaiacol is calculated by (initial guaiacol moles - residual guaiacol moles) / (initial guaiacol moles) X100%, and the selectivity of the product hydrocarbyl phenol is (hydrocarbyl phenol) The number of moles / (molar guaiacol moles) X 100 % was calculated. Among the guaiacol conversion products, ethyl phenols include o-ethyl phenol, 2,5-diethyl phenol, 3,5-diethyl phenol, and propyl phenols include 2,6-diisopropyl phenol. , 2,4-diisopropylphenol, 2,4,6-triisopropylphenol, butyl phenols including 2,5-di-sec-butylphenol, 2,6-di-tert-butylphenol, 2, 4-di-tert-butylphenol, 2,6-di-tert-butyl-p-ethylphenol, pentanols include 2,4-di-tert-amylphenol, others include o-ethoxyphenol, o-ethoxybenzene Methyl ether, p-ethyl guaiacol, 2,6-diisopropylanisole).
  • 6
  • [ 94-71-3 ]
  • ethylphenol [ No CAS ]
  • propylphenol [ No CAS ]
  • butylphenol [ No CAS ]
  • pentylphenol [ No CAS ]
  • methylphenol [ No CAS ]
  • mono-tert-butyl-m-cresol [ No CAS ]
  • [ 123-07-9 ]
  • [ 128-39-2 ]
  • [ 620-17-7 ]
  • [ 2934-05-6 ]
  • [ 527-18-4 ]
  • [ 2078-54-8 ]
  • [ 4130-42-1 ]
  • [ 1138-52-9 ]
  • [ 1197-34-8 ]
  • [ 5875-45-6 ]
  • [ 35946-91-9 ]
  • [ 876-20-0 ]
YieldReaction ConditionsOperation in experiment
With molybdenum(VI) oxide; In ethanol; at 280℃; for 4h;Inert atmosphere; General procedure: 2.0 g of guaiac acid (purchased in Tianjin Guangfu Technology Co., Ltd.), 0.5 g of MOS catalyst and 100 ml of ethanol were placed in a 300 ml reaction vessel, and the air in the reaction vessel was replaced with nitrogen. The temperature was raised to 280 C, and the reaction was stirred for 4 h. After the reaction was completed, the mixture was filtered under suction and rotary evaporated. The liquid product was subjected to qualitative analysis on a gas chromatography-mass spectrometer (GC6890-MS5973, Agilent), and the internal standard was added. Quantitative analysis by gas chromatography. The chromatogram was performed on an HP-5ms, 30m X 0.25mm X 0.25mum capillary column. The conversion of the raw guaiacol is calculated by (initial guaiacol moles - residual guaiacol moles) / (initial guaiacol moles) X100%, and the selectivity of the product hydrocarbyl phenol is (hydrocarbyl phenol) The number of moles / (molar guaiacol moles) X 100 % was calculated. Among the guaiacol conversion products, ethyl phenols include o-ethyl phenol, 2,5-diethyl phenol, 3,5-diethyl phenol, and propyl phenols include 2,6-diisopropyl phenol. , 2,4-diisopropylphenol, 2,4,6-triisopropylphenol, butyl phenols including 2,5-di-sec-butylphenol, 2,6-di-tert-butylphenol, 2, 4-di-tert-butylphenol, 2,6-di-tert-butyl-p-ethylphenol, pentanols include 2,4-di-tert-amylphenol, others include o-ethoxyphenol, o-ethoxybenzene Methyl ether, p-ethyl guaiacol, 2,6-diisopropylanisole).
 

Historical Records

Technical Information

Categories