Structure of 126712-07-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
| Size | Price | VIP Price |
DE Stock US Stock |
Asia Stock Global Stock |
In Stock |
| {[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.p_spot_brand_remark ]} 1-2 weeks {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock Inquiry - | Login - + |
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ item.p_spot_brand_remark ]}
1-2weeks
Inquiry
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Asia Stock: Ship in 3-5 business days
EU Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
| CAS No. : | 126712-07-0 |
| Formula : | C8H7BrO2 |
| M.W : | 215.04 |
| SMILES Code : | O=CC1=C(OC)C=CC=C1Br |
| MDL No. : | MFCD08059232 |
| InChI Key : | RQLOLSOZFHENIV-UHFFFAOYSA-N |
| Pubchem ID : | 554845 |
| GHS Pictogram: |
|
| Signal Word: | Warning |
| Hazard Statements: | H315-H319-H335 |
| Precautionary Statements: | P261-P305+P351+P338 |
| Num. heavy atoms | 11 |
| Num. arom. heavy atoms | 6 |
| Fraction Csp3 | 0.12 |
| Num. rotatable bonds | 2 |
| Num. H-bond acceptors | 2.0 |
| Num. H-bond donors | 0.0 |
| Molar Refractivity | 46.02 |
| TPSA ? Topological Polar Surface Area: Calculated from |
26.3 Ų |
| Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.78 |
| Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.05 |
| Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.27 |
| Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.86 |
| Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.65 |
| Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.12 |
| Log S (ESOL):? ESOL: Topological method implemented from |
-2.74 |
| Solubility | 0.395 mg/ml ; 0.00183 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (Ali)? Ali: Topological method implemented from |
-2.23 |
| Solubility | 1.26 mg/ml ; 0.00588 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.33 |
| Solubility | 0.0999 mg/ml ; 0.000465 mol/l |
| Class? Solubility class: Log S scale |
Soluble |
| GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
| BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
| P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
| CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
| CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
| CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
| CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
| CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
| Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.16 cm/s |
| Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
| Ghose? Ghose filter: implemented from |
None |
| Veber? Veber (GSK) filter: implemented from |
0.0 |
| Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
| Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
| Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
| PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
| Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
| Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
| Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.4 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 52% | o-Anisaldehyde (10.0 g, 73.4 mmol, 1.0 equiv) was dissolved in EtOH (150 mL) at 25 CC, MAT-dimemylethylenediamine (8.70 mL, 80.8 mmol, 1.1 equiv) was added, and the reaction contents were stirred at 25 C for 24 h before being filtered through a pad of MgS04 and concentrated to afford the desired imidazolidine (15.0 g, 99% yield) as a white solid. Without any additional purification, this material (15.0 g, 72.8 mmol, 1.0 equiv) was dissolved in Et20 (250 mL) and cooled to -40 C. f-BuLi (1.7 M in pentane. 100 mL 170 mmol, 2.34 equiv) was then added dropwise over 1 h at -40 C. Upon completion, the resultant orange reaction contents were warmed slowly to -20 C. stirred for an additional 7 h, and then transferred by cannula over 5 min into a flask containing (CBrCl2)2 (55.3 g, 170 mmol, 2.34 equiv) in Et20 (250 mL) at 0 C. The reaction contents were then stirred for 12 h, during which time they were warmed to 25 C; upon completion, the solution was recooled to 0 C and 1 M HCI (500 mL) was added slowly. The resultant solution was stirred for 1 h at 0 C, quickly warmed to 25 C, and then quenched by the addition of water (500 mL). The reaction contents were then extracted with EtOAc (3 x 250 mL), and the combined organic extracts were washed with water (500 mL) and brine (250 mL). dried (MgSO-i), and 73 concentrated.'23' The resultant crude yellow solid was purified by flash column chromatography (silica gel, hexanes EtOAc, 9/1) to give the desired brominated product 28 (8.12 g, 52% yield) as a white solid. This material (8.12 g, 37.8 mmol, 1.0 equiv) was suspended in MeOH (100 mL) at 25 C and cooled to 0 C. NaBHj (2.88g , 75.6 mmol, 2.0 equiv) was added portionwise and the reaction contents were stirred for 1 h at 0 C. Upon completion, the reaction contents were quenched with water (100 mL) and concentrated. The reaction contents were redissolved in EtOAc ( 100 mL), poured into water (100 mL), and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with water ( 150 mL) and brine (50 mL), dried (MgSO- , and concentrated to afford the desired alcohol (7.83 g, 96%) as a white solid. Pressing forward without any additional purification, this newly prepared material (7.83 g, 36.1 mmol, 1.0 equiv) was dissolved in EtjO (180 mL) and pyridine (0.437 mL, 5.41 mmol, 0.15 equiv) and PBr^ (3.41 mL, 36.1 mmol, 1.0 equiv) were added sequentially at 25 C. The reaction contents were then stirred for 4 h at 25 C. Upon completion, the reaction contents were quenched by the addition of water (100 mL), poured into water ( 100 ml), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (200 mL) and brine (100 mL), dried (MgS04), and concentrated to give the desired bromide (10.0 g, 99%) as a white solid. [Note: This product quickly decomposes on standing once it is neat and should be carried forward immediately. | Finally, KHMDS (0.5 M in toluene, 129 mL, 64.5 mmol, 1.8 equiv) was added to a solution of diethyl phosphite (9.19 mL, 71.4 mmol, 2.0 equiv) in THF (100 mL) at 0 C and stirred for 15 min. To this solution was added dropwise a solution of the freshly prepared bromide (10.0 g, 35.7 mmol, 1.0 equiv) dissolved in THF (100 mL), and the reaction contents were stirred for 12 h with slow warming to 25 C. Upon completion, the reaction contents were quenched with saturated NH4CI (150 mL), poured into water (150 mL), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (100 mL) and brine (100 mL), dried (MgS04), and concentrated to give the phosphonate 31 (10.79 g, 90%) as a colorless oil. 31: R/ = 0.21 (silica gel, EtOAc); IR (film) vmax 2981, 1589, 1572, 1466, 1435, 1267, 1082, 965, 864, 771 ; NMR (400 MHz, CDCI3) delta 7.18 (d, / = 8.0 Hz, 1 H), 7.07 (app dt, J = 8.0, 2.4 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 4.05 (dq, J = 7.2, 7.2 Hz, 4 H), 3.85 (s, 3 H), 3.50 (d, J = 22.0 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 6 H); l3C NMR (75 MHz, CDCI3) delta 158.4 (d, J = 5.4 Hz). 128.6 (d, J = 3.8 Hz), 125.8 (d, J = 7.5 Hz), 125.0 (d, J = 3.5 Hz), 121.6 (d, J = 10.6 Hz), 109.4 (d, J = 3.4 Hz), 61.9 (d, J = 6.5 Hz), 55.9, 28.3 (d, J = 139.0 Hz), 16.3 (d, J = 6.4 Hz); HRMS (MALDI-FTMS) calcd for Ci2H|9BrP04+ [M + H*] 337.0204, found 337.0189. 74 |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 96% | o-Anisaldehyde (10.0 g, 73.4 mmol, 1.0 equiv) was dissolved in EtOH (150 mL) at 25 CC, MAT-dimemylethylenediamine (8.70 mL, 80.8 mmol, 1.1 equiv) was added, and the reaction contents were stirred at 25 C for 24 h before being filtered through a pad of MgS04 and concentrated to afford the desired imidazolidine (15.0 g, 99% yield) as a white solid. Without any additional purification, this material (15.0 g, 72.8 mmol, 1.0 equiv) was dissolved in Et20 (250 mL) and cooled to -40 C. f-BuLi (1.7 M in pentane. 100 mL 170 mmol, 2.34 equiv) was then added dropwise over 1 h at -40 C. Upon completion, the resultant orange reaction contents were warmed slowly to -20 C. stirred for an additional 7 h, and then transferred by cannula over 5 min into a flask containing (CBrCl2)2 (55.3 g, 170 mmol, 2.34 equiv) in Et20 (250 mL) at 0 C. The reaction contents were then stirred for 12 h, during which time they were warmed to 25 C; upon completion, the solution was recooled to 0 C and 1 M HCI (500 mL) was added slowly. The resultant solution was stirred for 1 h at 0 C, quickly warmed to 25 C, and then quenched by the addition of water (500 mL). The reaction contents were then extracted with EtOAc (3 x 250 mL), and the combined organic extracts were washed with water (500 mL) and brine (250 mL). dried (MgSO-i), and 73 concentrated.'23' The resultant crude yellow solid was purified by flash column chromatography (silica gel, hexanes EtOAc, 9/1) to give the desired brominated product 28 (8.12 g, 52% yield) as a white solid. This material (8.12 g, 37.8 mmol, 1.0 equiv) was suspended in MeOH (100 mL) at 25 C and cooled to 0 C. NaBHj (2.88g , 75.6 mmol, 2.0 equiv) was added portionwise and the reaction contents were stirred for 1 h at 0 C. Upon completion, the reaction contents were quenched with water (100 mL) and concentrated. The reaction contents were redissolved in EtOAc ( 100 mL), poured into water (100 mL), and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with water ( 150 mL) and brine (50 mL), dried (MgSO- , and concentrated to afford the desired alcohol (7.83 g, 96%) as a white solid. Pressing forward without any additional purification, this newly prepared material (7.83 g, 36.1 mmol, 1.0 equiv) was dissolved in EtjO (180 mL) and pyridine (0.437 mL, 5.41 mmol, 0.15 equiv) and PBr^ (3.41 mL, 36.1 mmol, 1.0 equiv) were added sequentially at 25 C. The reaction contents were then stirred for 4 h at 25 C. Upon completion, the reaction contents were quenched by the addition of water (100 mL), poured into water ( 100 ml), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (200 mL) and brine (100 mL), dried (MgS04), and concentrated to give the desired bromide (10.0 g, 99%) as a white solid. [Note: This product quickly decomposes on standing once it is neat and should be carried forward immediately. | Finally, KHMDS (0.5 M in toluene, 129 mL, 64.5 mmol, 1.8 equiv) was added to a solution of diethyl phosphite (9.19 mL, 71.4 mmol, 2.0 equiv) in THF (100 mL) at 0 C and stirred for 15 min. To this solution was added dropwise a solution of the freshly prepared bromide (10.0 g, 35.7 mmol, 1.0 equiv) dissolved in THF (100 mL), and the reaction contents were stirred for 12 h with slow warming to 25 C. Upon completion, the reaction contents were quenched with saturated NH4CI (150 mL), poured into water (150 mL), and extracted with EtOAc (3 x 150 mL). The combined organic extracts were washed with water (100 mL) and brine (100 mL), dried (MgS04), and concentrated to give the phosphonate 31 (10.79 g, 90%) as a colorless oil. 31: R/ = 0.21 (silica gel, EtOAc); IR (film) vmax 2981, 1589, 1572, 1466, 1435, 1267, 1082, 965, 864, 771 ; NMR (400 MHz, CDCI3) delta 7.18 (d, / = 8.0 Hz, 1 H), 7.07 (app dt, J = 8.0, 2.4 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 4.05 (dq, J = 7.2, 7.2 Hz, 4 H), 3.85 (s, 3 H), 3.50 (d, J = 22.0 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 6 H); l3C NMR (75 MHz, CDCI3) delta 158.4 (d, J = 5.4 Hz). 128.6 (d, J = 3.8 Hz), 125.8 (d, J = 7.5 Hz), 125.0 (d, J = 3.5 Hz), 121.6 (d, J = 10.6 Hz), 109.4 (d, J = 3.4 Hz), 61.9 (d, J = 6.5 Hz), 55.9, 28.3 (d, J = 139.0 Hz), 16.3 (d, J = 6.4 Hz); HRMS (MALDI-FTMS) calcd for Ci2H|9BrP04+ [M + H*] 337.0204, found 337.0189. 74 |
[ 126712-07-0 ]
[ 6967-12-0 ]
[ 126-81-8 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 79% | With copper(l) iodide; caesium carbonate; In dimethyl sulfoxide; at 100℃; for 14h; | General procedure: A 25-mL flask was charged with o-halogenated benzaldehyde 1 (1.0mmol), 1H-indazol-6-amine 2 (133 mg, 1.0 mmol), cyclohexane-1,3-dione 3 (1.0 mmol), CuI (10 mg, 0.05 mmol), Cs2CO3 (652 mg, 2.0mmol), and DMSO (10 mL). The mixture was stirred at reflux untilcompletion (TLC monitoring). The solid was filtered off, and the filtratewas distilled under reduced pressure to recover the solvent; theresidue was purified by chromatography (silica gel, EtOAc-petroleumether, 1:2) to give 4. |
[ 126712-07-0 ]
[ 6967-12-0 ]
[ 504-02-9 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 82% | With copper(l) iodide; caesium carbonate; In dimethyl sulfoxide; at 100℃; for 18h; | General procedure: A 25-mL flask was charged with o-halogenated benzaldehyde 1 (1.0mmol), 1H-indazol-6-amine 2 (133 mg, 1.0 mmol), cyclohexane-1,3-dione 3 (1.0 mmol), CuI (10 mg, 0.05 mmol), Cs2CO3 (652 mg, 2.0mmol), and DMSO (10 mL). The mixture was stirred at reflux untilcompletion (TLC monitoring). The solid was filtered off, and the filtratewas distilled under reduced pressure to recover the solvent; theresidue was purified by chromatography (silica gel, EtOAc-petroleumether, 1:2) to give 4. |
[ 4341-24-6 ]
[ 126712-07-0 ]
[ 6967-12-0 ]
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| 79% | With copper(l) iodide; caesium carbonate; In dimethyl sulfoxide; at 100℃; for 12h; | General procedure: A 25-mL flask was charged with o-halogenated benzaldehyde 1 (1.0mmol), 1H-indazol-6-amine 2 (133 mg, 1.0 mmol), cyclohexane-1,3-dione 3 (1.0 mmol), CuI (10 mg, 0.05 mmol), Cs2CO3 (652 mg, 2.0mmol), and DMSO (10 mL). The mixture was stirred at reflux untilcompletion (TLC monitoring). The solid was filtered off, and the filtratewas distilled under reduced pressure to recover the solvent; theresidue was purified by chromatography (silica gel, EtOAc-petroleumether, 1:2) to give 4. |
| Yield | Reaction Conditions | Operation in experiment |
|---|---|---|
| With palladium diacetate; caesium carbonate; 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; In toluene; at 100℃; for 5h;Inert atmosphere; | General procedure: In a Schlenk tube under nitrogen atmosphere at room temperature were added BINAP (5.5 mol %), Pd(OAc)2 (5 mol %) and Cs2CO3 (1.4 equiv) and toluene (10 mL per mmol of 1bem). The suspension was heated at 80 C for 10 min and benzophenonehydrazone (2.1 equiv) and the chosen substituted starting material 1b-m (1 equiv) were added. The resulting mixture was heated at100 C for the time depicted in Tables 1 and 2. The mixture was poured in water (20 mL per mmol of 1bem) and CH2Cl2 (20 mL per mmol of 1b-m), filtrated on a short pad of Celite, andextracted with CH2Cl2 (320 mL per mmol of 1bem). The combined organic layers were washed with water (320 mL per mmolof 1bem), dried over MgSO4, filtrated and evaporated. The crude product was eluted on a short pad of silica gel using CH2Cl2 aseluent and evaporated. The crude was introduced in a microwavevial with p-toluenesulfonic acid (2 or 3 equiv see Tables 1 and 2) and solvents (see Tables 1 and 2, 10 mL per mmol of 1b-m). The vial was sealed and the suspension was heated at 100 C for the time depicted in Tables 1 and 2. The resulting mixture was poured in water (20 mL per mmol of 1b-m) and extracted with EtOAc (320 mL per mmol of 1bem). The combined layers were driedon MgSO4, filtrated, evaporated purified by silica gel chromatography. |

A133523 [380225-68-3]
1-(2-Bromo-6-methoxyphenyl)ethanone
Similarity: 0.90

A162285 [60632-40-8]
2-Bromo-4-hydroxy-5-methoxybenzaldehyde
Similarity: 0.89

A125341 [85604-06-4]
5-(Benzyloxy)-2-bromobenzaldehyde
Similarity: 0.88

A133523 [380225-68-3]
1-(2-Bromo-6-methoxyphenyl)ethanone
Similarity: 0.90

A162285 [60632-40-8]
2-Bromo-4-hydroxy-5-methoxybenzaldehyde
Similarity: 0.89

A125341 [85604-06-4]
5-(Benzyloxy)-2-bromobenzaldehyde
Similarity: 0.88

A162285 [60632-40-8]
2-Bromo-4-hydroxy-5-methoxybenzaldehyde
Similarity: 0.89

A125341 [85604-06-4]
5-(Benzyloxy)-2-bromobenzaldehyde
Similarity: 0.88

A173282 [162147-12-8]
2-Bromo-5-isopropoxybenzaldehyde
Similarity: 0.88

A133523 [380225-68-3]
1-(2-Bromo-6-methoxyphenyl)ethanone
Similarity: 0.90

A162285 [60632-40-8]
2-Bromo-4-hydroxy-5-methoxybenzaldehyde
Similarity: 0.89

A125341 [85604-06-4]
5-(Benzyloxy)-2-bromobenzaldehyde
Similarity: 0.88