Structure of 1395281-64-7
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1395281-64-7 |
Formula : | C9H8F2O2 |
M.W : | 186.16 |
SMILES Code : | OC1(C2=CC(F)=CC(F)=C2)COC1 |
MDL No. : | MFCD23703311 |
InChI Key : | NZCUIDNMEKWIBE-UHFFFAOYSA-N |
Pubchem ID : | 70655206 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302 |
Precautionary Statements: | P280-P305+P351+P338 |
Num. heavy atoms | 13 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.33 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 40.95 |
TPSA ? Topological Polar Surface Area: Calculated from |
29.46 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.83 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.72 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.91 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.71 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.85 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.8 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.72 |
Solubility | 3.52 mg/ml ; 0.0189 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.92 |
Solubility | 22.5 mg/ml ; 0.121 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.94 |
Solubility | 0.213 mg/ml ; 0.00115 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.92 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.61 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | In N,N-dimethyl-formamide; mineral oil; | Synthesis of 3-(3,5-difluorophenyl)-3-methoxyoxetane A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H). |
83% | A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H). | |
83% | A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H). |
83% | Synthesis of 3-(3,5-difluorophenyl)-3-methoxyoxetane A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5- difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM- d) delta ppm 3.18 (s, 3 H), 4.70 (d, J=7.04 Hz, 2 H), 4.92 (d, J=7.43 Hz, 2 H), 6.80 (tt, J=8.66, 2.30 Hz, 1 H), 6.99 - 7.08 (m, 2 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
56% | In tetrahydrofuran; ethyl acetate; | Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H). |
56% | To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H). | |
56% | To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H). |
56% | Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100%) EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H). | |
56% | To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5- difhiorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H). | |
56% | Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sa ), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100%) EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With n-butyllithium; | Synthesis of 3-(3,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxetan-3-ol Method 3 was followed using 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.5 equiv.), butyllithium (2.4 equiv.) and <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) to give 3-(3,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxetan-3-ol in 79% yield. 1H NMR (400 MHz, <cdcl3>) delta ppm 1.34-1.42 (m, 12H), 4.79 (d, J=7.63 Hz, 2 H), 4.90 (d, J=7.34 Hz, 2H), 7.17 (d, J=8.22 Hz, 2H). |