Home Cart Sign in  
Chemical Structure| 1395281-64-7 Chemical Structure| 1395281-64-7

Structure of 1395281-64-7

Chemical Structure| 1395281-64-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 1395281-64-7 ]

CAS No. :1395281-64-7
Formula : C9H8F2O2
M.W : 186.16
SMILES Code : OC1(C2=CC(F)=CC(F)=C2)COC1
MDL No. :MFCD23703311
InChI Key :NZCUIDNMEKWIBE-UHFFFAOYSA-N
Pubchem ID :70655206

Safety of [ 1395281-64-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302
Precautionary Statements:P280-P305+P351+P338

Computational Chemistry of [ 1395281-64-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 13
Num. arom. heavy atoms 6
Fraction Csp3 0.33
Num. rotatable bonds 1
Num. H-bond acceptors 4.0
Num. H-bond donors 1.0
Molar Refractivity 40.95
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

29.46 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.83
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.72
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.91
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.71
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.85
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.8

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.72
Solubility 3.52 mg/ml ; 0.0189 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-0.92
Solubility 22.5 mg/ml ; 0.121 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.94
Solubility 0.213 mg/ml ; 0.00115 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.92 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.61

Application In Synthesis of [ 1395281-64-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1395281-64-7 ]

[ 1395281-64-7 ] Synthesis Path-Downstream   1~10

  • 1
  • [ 1395281-64-7 ]
  • [ 74-88-4 ]
  • [ 1395282-84-4 ]
YieldReaction ConditionsOperation in experiment
83% In N,N-dimethyl-formamide; mineral oil; Synthesis of 3-(3,5-difluorophenyl)-3-methoxyoxetane A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H).
83% A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H).
83% A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5-difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 3.18 (s, 3H), 4.70 (d, J=7.04 Hz, 2H), 4.92 (d, J=7.43 Hz, 2H), 6.80 (tt, J=8.66, 2.30 Hz, 1H), 6.99-7.08 (m, 2H).
83% Synthesis of 3-(3,5-difluorophenyl)-3-methoxyoxetane A solution of <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) in DMF (0.23 M) was cooled in an ice water bath. NaH, 60% dispersion in mineral oil (1.1 equiv.) was added. The mixture was stirred for 1 hr. iodomethane (1.1 equiv.) was added in a dropwise fashion. The ice bath was removed, and the mixture was stirred for 2 hr at ambient temperature. The reaction mixture was quenched by the addition of water. The mixture was extracted with ether. The combined extracts were washed sequentially with water and brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (2:1 pentane:ether) to give 3-(3,5- difluorophenyl)-3-methoxyoxetane in 83% yield. 1H NMR (400 MHz, CHLOROFORM- d) delta ppm 3.18 (s, 3 H), 4.70 (d, J=7.04 Hz, 2 H), 4.92 (d, J=7.43 Hz, 2 H), 6.80 (tt, J=8.66, 2.30 Hz, 1 H), 6.99 - 7.08 (m, 2 H).

  • 2
  • [ 6704-31-0 ]
  • [ 461-96-1 ]
  • [ 1395281-64-7 ]
YieldReaction ConditionsOperation in experiment
56% In tetrahydrofuran; ethyl acetate; Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H).
56% To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H).
56% To a solution of 1-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C. oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by ISCO SiO2 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2H), 4.91 (d, J=7.63 Hz, 2 H), 7.16-7.23 (m, 2H).
56% Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100%) EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H).
56% To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sat.), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100% EtOAc/n-heptanes gradient) to yield 3-(3,5- difhiorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H).
56% Synthesis of 3-(3,5-difluorophenyl)oxetan-3-ol To a solution of l-bromo-3,5-difluorobenzene in THF (0.27 M) under Ar was added Mg turnings (1.6 M). A reflux condenser was attached and the solution was submerged in a 90 C oil bath and refluxed for two hours. The oxetan-3-one (1.0 equiv.) was added in THF via syringe. The solution was left stirring at rt under Ar overnight. The reaction solution was quenched by addition of NH4Cl(sat) and the solution was extracted with EtOAc, washed with NaCl(sa ), dried over MgS04, filtered, concentrated and purified by ISCO Si02 chromatography (0-100%) EtOAc/n-heptanes gradient) to yield 3-(3,5-difluorophenyl)oxetan-3-ol in 56% yield. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 4.82 (d, J=7.63 Hz, 2 H), 4.91 (d, J=7.63 Hz, 2 H), 7.16 - 7.23 (m, 2 H).

  • 3
  • [ 61676-62-8 ]
  • [ 1395281-64-7 ]
  • [ 1395281-67-0 ]
YieldReaction ConditionsOperation in experiment
79% With n-butyllithium; Synthesis of 3-(3,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxetan-3-ol Method 3 was followed using 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.5 equiv.), butyllithium (2.4 equiv.) and <strong>[1395281-64-7]3-(3,5-difluorophenyl)oxetan-3-ol</strong> (1.0 equiv.) to give 3-(3,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxetan-3-ol in 79% yield. 1H NMR (400 MHz, <cdcl3>) delta ppm 1.34-1.42 (m, 12H), 4.79 (d, J=7.63 Hz, 2 H), 4.90 (d, J=7.34 Hz, 2H), 7.17 (d, J=8.22 Hz, 2H).
  • 4
  • [ 1395281-64-7 ]
  • [ 1395281-70-5 ]
  • 5
  • [ 1395281-64-7 ]
  • [ 1395281-73-8 ]
  • 6
  • [ 1395281-64-7 ]
  • [ 1395281-76-1 ]
  • 7
  • [ 1395281-64-7 ]
  • [ 1395281-79-4 ]
  • 8
  • [ 1395281-64-7 ]
  • [ 1395281-82-9 ]
  • 9
  • [ 1395281-64-7 ]
  • [ 1395281-85-2 ]
  • 10
  • [ 1395281-64-7 ]
  • [ 1395282-87-7 ]
 

Historical Records

Technical Information

Categories