Home Cart Sign in  
Chemical Structure| 16136-52-0 Chemical Structure| 16136-52-0

Structure of 4-Cyanoindole
CAS No.: 16136-52-0

Chemical Structure| 16136-52-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

Synonyms: 4-Indolecarbonitrile

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 16136-52-0 ]

CAS No. :16136-52-0
Formula : C9H6N2
M.W : 142.16
SMILES Code : C1=C[NH]C2=CC=CC(=C12)C#N
Synonyms :
4-Indolecarbonitrile
MDL No. :MFCD00152045
InChI Key :CEUFGDDOMXCXFW-UHFFFAOYSA-N
Pubchem ID :3817602

Safety of [ 16136-52-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P280-P305+P351+P338-P310

Computational Chemistry of [ 16136-52-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 11
Num. arom. heavy atoms 9
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 1.0
Num. H-bond donors 1.0
Molar Refractivity 43.01
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

39.58 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.46
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.77
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.04
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.88
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.51
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.73

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.44
Solubility 0.514 mg/ml ; 0.00361 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.22
Solubility 0.858 mg/ml ; 0.00604 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.34
Solubility 0.0644 mg/ml ; 0.000453 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.91 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.51

Application In Synthesis of [ 16136-52-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 16136-52-0 ]

[ 16136-52-0 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 16136-52-0 ]
  • [ 144-55-8 ]
  • [ 3468-18-6 ]
YieldReaction ConditionsOperation in experiment
80% With sodium hydroxide; In tetrahydrofuran; Example 10 Preparation of 1H-indole-4-methanamine Lithium aluminum hydride (3.80 g, 100.0 mmol) was added in 0.5 g portions over 30 min to a solution of 1H-indole-4-carbonitrile (prepared according to Clark, Robin D.; Repke, David B. J. Heterocycl. Chem. 1985, 22, 121-5; 7.50 g, 52.8 mmol) in tetrahydrofuran (250 mL). The mixture was heated at reflux for 30 min. A solution of 1 M sodium hydroxide was added to quench excess lithium aluminum hydride. The mixture was filtered and the filter cake was washed with water. The filtrate was first made acidic with 1 N HCl and then made basic again by the addition of saturated aqueous NaHCO3. The water layer was then extracted with nBuOH. Evaporation of nBuOH, and drying under vacuum gave 1H-indole-4-methanamine (6.24 g, 80%) as a beige solid.
  • 2
  • [ 16136-52-0 ]
  • [ 3468-18-6 ]
YieldReaction ConditionsOperation in experiment
94% Preparation of C-(1H-indol-4-yl)-methylamine To a solution of 4-cyanoindole (7.5 g, 53 mmol) in THF (100 ml) was added at rt a 1.0M solution of lithium aluminum hydride in THF (100 ml, 100 mmol). The mixture was refluxed for 30 min then cooled to rt. The reaction mixture was quenched with 1N NaOH and filtered. The filtrate was acidified with 1N HCl and stirred at rt for 10 min. The pH was adjusted to ~8 by adding sat NaHCO3 and extracted with n-butanol. The layers were separated and the organic layer was concentrated to dryness. The residue was triturated with methanol. Insoluble materials were removed by filtration and the filtrate was concentrated under reduced pressure to afford the desired product as a solid that was further dried under high vacuum at 50 C. (7.27 g, 94% yield).
82% With palladium 10% on activated carbon; hydrogen; In methanol; at 20℃; under 2068.65 - 2172.08 Torr;Inert atmosphere; Method B. 4-cynoindole (1.0 mmol) was dissolved in MeOH in a hydrogenator reaction flask, 10% Pd/C (10 mg) was added and hydrogenator was shook at 40-42 psi overnight. Reaction mixture was carefully taken out from hydrogenator, filtered through celite and purified by column chromatography (EtOAc: MeOH; 9.5: 0.5) with few drops of aqueous ammonia.
  • 3
  • [ 16136-52-0 ]
  • [ 1542705-92-9 ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 16136-52-0 ]

Nitriles

Chemical Structure| 885518-39-8

A278566 [885518-39-8]

4-Amino-1H-indole-6-carbonitrile

Similarity: 0.89

Chemical Structure| 96631-87-7

A378351 [96631-87-7]

1H-Indole-7-carbonitrile

Similarity: 0.89

Chemical Structure| 115661-82-0

A113412 [115661-82-0]

Indoline-7-carbonitrile

Similarity: 0.86

Chemical Structure| 15861-24-2

A235316 [15861-24-2]

Indole-5-carbonitrile

Similarity: 0.83

Chemical Structure| 15861-36-6

A267680 [15861-36-6]

6-Cyanoindole

Similarity: 0.83

Related Parent Nucleus of
[ 16136-52-0 ]

Indoles

Chemical Structure| 885518-39-8

A278566 [885518-39-8]

4-Amino-1H-indole-6-carbonitrile

Similarity: 0.89

Chemical Structure| 96631-87-7

A378351 [96631-87-7]

1H-Indole-7-carbonitrile

Similarity: 0.89

Chemical Structure| 614-96-0

A210366 [614-96-0]

5-Methylindole

Similarity: 0.84

Chemical Structure| 15861-24-2

A235316 [15861-24-2]

Indole-5-carbonitrile

Similarity: 0.83

Chemical Structure| 15861-36-6

A267680 [15861-36-6]

6-Cyanoindole

Similarity: 0.83