Home Cart Sign in  
Chemical Structure| 1738-76-7 Chemical Structure| 1738-76-7

Structure of H-Gly-OBzl.TosOH
CAS No.: 1738-76-7

Chemical Structure| 1738-76-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 1738-76-7 ]

CAS No. :1738-76-7
Formula : C16H19NO5S
M.W : 337.39
SMILES Code : O=C(OCC1=CC=CC=C1)CN.CC2=CC=C(S(=O)(O)=O)C=C2
MDL No. :MFCD00035425
InChI Key :WJKJXKRHMUXQSL-UHFFFAOYSA-N
Pubchem ID :6451311

Safety of [ 1738-76-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 1738-76-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 23
Num. arom. heavy atoms 12
Fraction Csp3 0.19
Num. rotatable bonds 5
Num. H-bond acceptors 6.0
Num. H-bond donors 2.0
Molar Refractivity 86.28
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

115.07 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.38
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-0.55
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.86
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.02
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.18
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.58

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.64
Solubility 7.7 mg/ml ; 0.0228 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.4
Solubility 13.5 mg/ml ; 0.0401 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.53
Solubility 1.0 mg/ml ; 0.00296 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-8.75 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<0.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.55

Application In Synthesis of [ 1738-76-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1738-76-7 ]

[ 1738-76-7 ] Synthesis Path-Downstream   1~6

  • 2
  • [ 59969-65-2 ]
  • [ 1738-76-7 ]
  • [ 62023-09-0 ]
  • 3
  • [ 1738-76-7 ]
  • [ 49827-15-8 ]
  • [ 171557-57-6 ]
  • 4
  • [ 364750-81-2 ]
  • [ 1738-76-7 ]
  • [ 901139-29-5 ]
YieldReaction ConditionsOperation in experiment
84% With benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate; N-ethyl-N,N-diisopropylamine; In dichloromethane; for 27h; Compound 9 (1.6 g, 7.0 mmol), glycine benzyl ester tosylate (3.07 g, 9.1 mmol), and PyBOP (3.64 g, 7.0 mmol) were dissolved in anhydrous CH2Cl2 (80 mL). DIEA (2.26 g, 17.5 mmol) was added, and the resulting solution was stirred for 27 h under Ar(g). The reaction mixture was washed with 10percent w/v aqueous citric acid (3.x.50 mL), NaHCO3 (3.x.50 mL), water (50 mL), and brine (50 mL), dried over anhydrous MgSO4(s), and concentrated under reduced pressure. The crude oil was purified by flash chromatography (1:1 EtOAc:hexane) to afford 11 (2.13 g, 5.9 mmol, 84percent) as a colorless, sticky liquid. 1H NMR delta: 1.03 and 1.04 (d, J=3.2, 3H), 1.44 (bs, 9H), 1.55-2.50 (m, 4H), 2.90 (t, J=9.8, 1H), 3.65-3.94 (m, 1H), 4.01-4.34 (m, 3H), 5.18 (s, 2H), 7.36 (bs, 5H); HRMS-ESI (m/z): [M+Na]+ calcd for C20H28N2O5Na, 399.1896; found, 399.1897.
  • 5
  • [ 1738-76-7 ]
  • [ 71239-85-5 ]
  • [ 337530-28-6 ]
YieldReaction ConditionsOperation in experiment
With diphenyl phosphoryl azide; N-ethyl-N,N-diisopropylamine; In DMF (N,N-dimethyl-formamide); at 4 - 20℃; for 3.0h; To a solution of (2S)-2-[(tert-butoxycarbonyl)amino]-3-(2-pyridyl)propanoic acid (55.0 g), glycine benzyl ester tosylate (69.7 g), and diphenylphosphoryl azide (46.7 ml) in N,N-dimethylformamide (550 ml) was added dropwise N,N-diisopropylethylamine (75.6 ml) at 4 C. The mixture was warmed to room temperature and stirred for 3 hours. The resulting mixture was poured into ice-cold saturated aqueous sodium hydrogencarbonate solution (700 ml). The mixture was extracted twice with ethyl acetate (total 1.3 L) and washed successively with water (400 ml×2), saturated aqueous ammonium chloride solution (200 ml), aqueous sodium hydrogencarbonate solution (300 ml×2), and brine (40 ml). The organic layer was dried over anhydrous magnesium sulfate and concentrated to give the title compound (77.4 g) as pale brown crystals. [00175] ESI-MS: 414.3(H+H) [00176] 1H-NMR (300 MHz, CDCl3) delta 8.48 (dd, J=5 Hz,2 Hz, 1H), 7.82 (br, 1H), 7.60 (td, J=8 Hz,2 Hz, 1H), 7.40-7.29 (m, 5H), 7.21 (d, J=8 Hz, 1H), 7.14 (dd, J=8 Hz,5 Hz, 1H), 6.33 (br, 1H), 5.15 (s, 2H), 4.62 (br, 1H), 4.04 (d, J=6 Hz, 2H), 3.36-3.18 (m, 2H), 1.43 (s, 9H).
  • 6
  • [ 34404-33-6 ]
  • [ 1738-76-7 ]
  • [ 64410-44-2 ]
YieldReaction ConditionsOperation in experiment
With 4-methyl-morpholine; In N,N-dimethyl-formamide; at 25℃;pH 7.2 - 7.5; Dissolve 907 g of H-Gly(OBzl)*Tos in 3 L of DMF, adjust pH to 7.2-7.5 with N-methylmorpholine. Add a solution of 773 g of <strong>[34404-33-6]Boc-Ala-ONSu</strong> in 2 L DMF in a single portion under cooling on a water bath. T<25 C. Remove the bath and stir at room temperature. TLC control. Evaporate DMF on a rotary evaporator at 41 C. under the vacuum of a rotary vane pump. Dissolve the resulting oil in 15 L of ethyl acetate and transfer to a glass desiccator equipped with a stirrer. Wash the organic layer 3 times with 3 L portions of water. Bring 200 mL of saturated Na2CO3 solution to 3 L with water, wash the organic layer with this solution, then wash 3 more times with 3 L portions of water. Prepare a solution of 6.5 mL 20% sulfuric acid in 3 L of water, wash the organic layer with this solution, then wash 3 more times with 3 L portions of water. At each washing add 0.5 L of ethyl acetate. Evaporate ethyl acetate on a rotary evaporator at 41 C. under the vacuum of a diaphragm pump.
 

Historical Records

Technical Information

Categories